(完整word版)北师大版九年级数学知识点汇总-推荐文档.doc
上传人:一吃****永贺 上传时间:2024-09-10 格式:DOC 页数:16 大小:1.1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)北师大版九年级数学知识点汇总-推荐文档.doc

(完整word版)北师大版九年级数学知识点汇总-推荐文档.doc

预览

免费试读已结束,剩余 6 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北师大版九年级数学知识点汇总特殊平行四边形一、平行四边形1、定义:两组对边分别平行的四边形是平行四边形。2、性质:(1)平行四边形的对边平行且相等。(2)平行四边形的对角相等,邻角互补。(3)平行四边形的对角线互相平分,两条对角线把平行四边形分成四个面积相等的三角形。(4)平行四边形是中心对称图形。3、判定:(1)两组对边分别平行的四边形是平行四边形。(2)两组对边分别相等的四边形是平行四边形。(3)一组对边平行且相等的四边形是平行四边形。(4)两组对角分别相等的四边形是平行四边形。(5)对角线互相平分的四边形是平行四边形。4、面积:S平行四边形=底ⅹ高二、菱形1、定义:有一组邻边相等的平行四边形是菱形。2、性质:(1)菱形具有平行四边形的所有性质。(2)菱形的四条边都相等。(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;两条对角线把菱形分成四个全等的直角三角形。(4)菱形既是中心对称图形,又是轴对称图形(两条)。3、判定:(1)有一组邻边相等的平行四边形是菱形。(2)对角线互相垂直的平行四边形是菱形。(3)四条边都相等的四边形是菱形。4、面积:S菱形=底ⅹ高;S菱形=对角线乘积的一半三、矩形1、定义:有一个角是直角的平行四边形是矩形。2、性质:(1)矩形具有平行四边形的所有性质。(2)矩形的四个角都是直角。(3)矩形的对角线相等且互相平分,两条对角线把矩形分成四个面积相等的等腰三角形。(4)推论:直角三角形斜边上的中线等于斜边的一半。(5)矩形既是中心对称图形,又是轴对称图形(两条)。3、判定:(1)有一个角是直角的平行四边形是矩形。(2)对角线相等的平行四边形是矩形。(3)有三个角是直角的四边形是矩形。4、面积:S矩形=底ⅹ高四、正方形1、定义:有一组邻边相等,且有一个角是直角的平行四边形是正方形。2、性质:(1)正方形具有菱形和矩形的所有性质。(2)正方形的四条边都相等,四个角都是直角。(3)正方形的对角线互相垂直平分且相等,两条对角线把正方形分成四个全等的等腰直角三角形。(4)正方形既是中心对称图形,又是轴对称图形(四条)。3、判定:(1)有一组邻边相等的矩形是正方形。(2)对角线互相垂直的矩形是正方形。正方形=菱形+矩形(3)有一个角是直角的菱形是正方形。(4)对角线相等的菱形是正方形。4、面积:S正方形=边长的平方;S正方形=对角线乘积的一半五、中点四边形1、定义:以四边形四条边的中点为顶点组成的四边形2、中点四边形:一般四边形→平行四边形;平行四边形→平行四边形;菱形→矩形;矩形→菱形;正方形→正方形。第二章一元二次方程一、定义:我们把形如的方程,称为一元二次方程。其中,,分别称为二次项,一次项和常数项,,分别称为二次项系数和一次项系数。二、解一元二次方程的方法1、配方法:移项→二次项系数化为1→配方(方程两边同时加上一次项系数一半的平方)→开平方(有正负两个结果)→求解→写根。2、公式法:化为一般形式()→找出,,(记得带上符号)→代入根的判别式()→代入求根公式()→求解→写根。3、因式分解法:当一元二次方程的一边为0,另一边易于分解成两个一次因式的乘积时可用因式分解法。(1)提公因式法:→(2)公式法:①平方差公式:②完全平方公式:(3)十字相乘法:三、一元二次方程根的判别式:对于一元二次方程(1)当时,方程有两个不相等的实数根。(2)当时,方程有两个相等的实数根。(3)当时,方程没有实数根。四、一元二次方程根与系数之间的关系(韦达定理)如果方程有两个实数根,,那么,五、应用一元二次方程(1、几何面积问题;2、销售问题)审题→寻找数量关系和等量关系→设未知数(直接假设和间接假设)→列一元二次方程→解方程→检验→作答。第三章概率的进一步认识一、列表法和化树状图法1、列表法:当一次实验涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法。2、画树状图法:当一次实验涉及3个或更多因素时,列表就不方便,为了不重不漏地列出所有可能的结果,通常采用画树状图法。二、频率估计概率:一般的,在大量重复实验时,如果事件A发成的频率稳定于某个常数,那么事件A发生的概率第四章图形的相似一、成比例线段1、定义:四条线段中,如果与的比等于与的比,即,那么这四条线段叫做成比例线段,简称比例线段。2、性质:(1)基本性质:如果,那么;如果,那么(2)等比性质:如果,那么(3)合比性质:如果,那么,二、平行线分线段成比例1、定理:两条直线被一组平