深圳市七年级数学下册期末压轴题考试题及答案.doc
上传人:书生****aa 上传时间:2024-09-12 格式:DOC 页数:44 大小:3.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

深圳市七年级数学下册期末压轴题考试题及答案.doc

深圳市七年级数学下册期末压轴题考试题及答案.doc

预览

免费试读已结束,剩余 34 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、解答题1.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0,D为线段AC的中点.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).(1)则A点的坐标为;点C的坐标为,D点的坐标为.(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,请确定∠OHC,∠ACE和∠OEC的数量关系,并说明理由.2.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.3.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且.(1)________,________;直线与的位置关系是______;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.4.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.(1)如图1,求证:;(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;5.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)6.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:①,②,③,…,猜想并写出第个式子的结果:.(直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果:①;②;(3)拓展延伸计算:.8.下列等式:,,,将以上三个等式两边分别相加得:.(1)观察发现:__________.(2)初步应用:利用(1)的结论,解决以下问题“①把拆成两个分子为1的正的真分数之差,即;②把拆成两个分子为1的正的真分数之和,即;(3)定义“”是一种新的运算,若,,,求的值.9.先阅读然后解答提出的问题:设a、b是有理数,且满足,求ba的值.解:由题意得,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.问题:设x、y都是有理数,且满足,求x+y的值.10.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)我们知道,,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,________,________,________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后