【全国百强校】广东省华南师范大学附属中学2022-2023学年高三三模 数学 Word版试题含答案.doc
上传人:运升****魔王 上传时间:2024-09-12 格式:DOC 页数:14 大小:1.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

【全国百强校】广东省华南师范大学附属中学2022-2023学年高三三模 数学 Word版试题含答案.doc

【全国百强校】广东省华南师范大学附属中学2022-2023学年高三三模数学Word版试题含答案.doc

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023届高三综合测试数学2023年5月注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则等于()A.B.C.D.2.已知复数满足,则复数对应的点在第()象限A.一B.二C.三D.四3.已知向量,,且,则()A.3B.4C.5D.64.在流行病学中,基本传染数是指每名感染者平均可传染的人数.当基本传染数高于1时,每个感染者平均会感染1个以上的人,从而导致感染这种疾病的人数呈指数级增长.当基本传染数持续低于1时,疫情才可能逐渐消散.接种疫苗是预防病毒感染的有效手段.已知某病毒的基本传染数,若1个感染者在每个传染期会接触到个新人,这人中有个人接种过疫苗(称为接种率),那么1个感染者新的传染人数为,为了有效控制病毒传染(使1个感染者传染人数不超过1),我国疫苗的接种率至少为()A.75%B.80%C.85%D.90%5.设为正项等差数列的前项和.若,则的最小值为()A.B.5C.9D.6.已知,,,则()A.B.C.D.7.已知克列尔公式:对任意四面体,其体积和外接球半径满足,其中,,,,,,分别为四面体的三组对棱的长.在四面体中,若,,则该四面体的外接球的表面积为()A.B.C.D.8.在平面直角坐标系中,若抛物线:的准线与圆:相切于点,直线与抛物线切于点,点在圆上,则的取值范围为()A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.为了建立茶水温度随时间变化的回归模型,小明每隔1分钟测量一次茶水温度,得到若干组数据,,…,(其中,),绘制了如图所示的散点图.小明选择了如下2个回归模型来拟合茶水温度随时间的变化情况,回归模型一:;回归模型二:,下列说法正确的是()A.茶水温度与时间这两个变量负相关B.由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C.若选择回归模型二,利用最小二乘法求得到的图象一定经过点D.当时,通过回归模型二计算得,用温度计测得实际茶水温度为65.2,则残差为10.下列命题正确的是()A.如果一条直线上两点到一个平面的距离相等,那么这个直线与这个平面平行B.两条平行直线被两个平行平面所截的线段长度相等C.如果一个平面内一个锐角的两边,分别平行于另一个平面内一个角的两边,那么这两个平面平行D.如果一条直线垂直于一个平面内的无数条直线,那么这条直线和这个平面垂直11.在平面直角坐标系中,双曲线:的下、上焦点分别是,,渐近线方程为,为双曲线上任意一点,平分,且,,则()A.双曲线的离心率为B.双曲线的方程为C.若直线与双曲线的另一个交点为,为的中点,则D.点到两条渐近线的距离之积为12.已知有三个不相等的零点,,,且,则下列命题正确的是()A.存在实数,使得B.C.D.为定值三、填空题:本题共4小题,每小题5分,共20分。13.函数在点处的切线方程为________.14.甲、乙、丙3所学校每所学校各派出两名同学,现从这六名同学中任取两名,安排到甲、乙、丙3所学校交流。每所学校至多安排一名同学,每名同学只能去一所学校且不能去自己原先的学校,则不同的安排方法有________种.15.在中,已知,,,,边上两条中线,相交于点,则的余弦值为________.16.我们称元有序实数组为维向量,为该向量的范数.已知维向量,其中,,记范数为奇数的的个数为,则________.(用含的式子表示,)四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知函数,.(1)若函数图象的两条相邻对称轴之间的距离为,求的单调增区间;(2)若函数的图象关于对称,且函数在上单调,求的值.18.(12分)已知整数数列是等差数列,数列满足.数列,前项和分别为,,其中.(1)求数列的通项公式;(2)用表示不超过的最大整数,求数列的前20项和.19.(12分)某地的水果店老板记录了过去50天某类水果的日需求量(单位:箱),整理得到数据如下表所示,已知每箱某类水果的进货价为50元,售价为1
立即下载