中考数学命题研究-第三编-综合专题闯关篇-专题三-阅读理解型问题试题.doc
上传人:王子****青蛙 上传时间:2024-09-09 格式:DOC 页数:5 大小:159KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

中考数学命题研究-第三编-综合专题闯关篇-专题三-阅读理解型问题试题.doc

中考数学命题研究-第三编-综合专题闯关篇-专题三-阅读理解型问题试题.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题三阅读理解型问题阅读理解题通常是给出一段文字,或陈述某个数学命题的解题过程,或设计一个新的数学情境,要求学生在阅读理解的基础上,进行判断概括或迁移运用,从而解决题目中提出的问题.这类问题的考查目标既有基础知识,又涉及阅读理解能力、自习能力、书面表达能力、随机应变能力和知识迁移运用能力等.2016年贵阳中考首次考查了阅读理解几何综合应用问题.预计2017贵阳中考还会考查此类型题目,复习时应加大训练力度.,中考重难点突破)阅读解题过程,模仿解题策略【经典导例】【例1】(2016贵阳中考)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【解析】本题属于阅读理解题,解题方法主要是数学中“转化”思想的运用.对于(2)延长FD至点M,使DM=DF,连接EM,BM,利用全等三角形性质和线段垂直平分线性质把线段BE,CF,EF转化到△BEM中来研究;对于(3)要延长AB至点N,使BN=DF,连接CN,先证明△NBC≌△FDC,得CN=CF,∠NCB=∠FCD.再根据已知条件证明△NCE≌△FCE,得EN=EF,则有BE+BN=EN,所以有BE+DF=EF.【学生解答】解:(1)2<AD<8;(2)延长FD至点M,使DM=DF,连接EM,BM,在△BMD和△CFD中.∵点D是BC的中点,∴BD=CD.∵∠BDM=∠CDF,DM=DF,∴△BMD≌△CFD,∴BM=CF.又∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,BE+BM>EM,∴BE+CF>EF;(3)BE+DF=EF.理由:延长AB至点N,使BN=DF,连接CN.在△NBC和△FDC中,CB=CD,BN=DF.∵∠NBC+∠ABC=180°,∠D+∠ABC=180°,∴∠NBC=∠D,∴△NBC≌△FDC,∴CN=CF,∠NCB=∠FCD.∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠NCE=70°,在△NCE和△FCE中,CN=CF,∠ECF=∠NCE=70°,CE=CE,∴△NCE≌△FCE,∴EN=EF.∵BE+BN=EN,∴BE+DF=EF.1.(张家界中考)阅读材料:解分式不等式<0,解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:-2<x<1,所以原不等式的解集是-2<x<1.请仿照上述方法解下列分式不等式:(1)≤0;(2)>0.解:(1)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此原不等式可转化为:①或②解①得:无解,解②得:-2.5<x≤4,所以原不等式的解集是:-2.5<x≤4;(2)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数.因此,原不等式可转化为:①或②解①得:x>3,解②得:x<-2,所以原不等式的解集是:x>3或x<-2.2.(2016兰州中考)在数学课上,老师请同学们思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题时,有如下思路:连接AC.结合小敏的思路作答:(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题的方法解决以下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.解:(1)四边形EFGH还是平行四边形,理由如下:连接AC.∵E,F分别是AB,BC的中点,∴EF∥AC,EF=AC.∵G,H分别是CD,AD的中点,∴GH∥AC,GH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形;(2)①当AC=BD时,四边形EFGH是菱形,理由如下:由(1)可知四边形EFGH是平行四边形,当AC=BD时,FG=BD,EF=AC,∴FG=E
立即下载