(word完整版)高中不等式所有知识及典型例题(超全).doc
上传人:文库****坚白 上传时间:2024-09-11 格式:DOC 页数:11 大小:1.5MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(word完整版)高中不等式所有知识及典型例题(超全).doc

(word完整版)高中不等式所有知识及典型例题(超全).doc

预览

免费试读已结束,剩余 1 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE\*MERGEFORMAT11不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。其中比较法(作差、作商)是最基本的方法。三.重要不等式1.(1)若,则(2)若,则(当且仅当时取“=”)2.(1)若,则(2)若,则(当且仅当时取“=”)(3)若,则(当且仅当时取“=”)3.若,则(当且仅当时取“=”);若,则(当且仅当时取“=”)若,则(当且仅当时取“=”)若,则(当且仅当时取“=”)若,则(当且仅当时取“=”)4.若,则(当且仅当时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.5.a3+b3+c3≥3abc(a,b,cR+),EQ\F(a+b+c,3)≥(当且仅当a=b=c时取等号);6.EQ\F(1,n)(a1+a2+……+an)≥(aiR+,i=1,2,…,n),当且仅当a1=a2=…=an取等号;变式:a2+b2+c2≥ab+bc+ca;ab≤(EQ\F(a+b,2))2(a,bR+);abc≤(EQ\F(a+b+c,3))3(a,b,cR+)a≤EQ\F(2ab,a+b)≤EQ\R(ab)≤EQ\F(a+b,2)≤EQ\R(EQ\F(a2+b2,2))≤b.(0<a≤b)7.浓度不等式:EQ\F(b-n,a-n)<EQ\F(b,a)<EQ\F(b+m,a+m),a>b>n>0,m>0;应用一:求最值例1:求下列函数的值域(1)y=3x2+eq\f(1,2x2)(2)y=x+eq\f(1,x)解题技巧:技巧一:凑项例1:已知,求函数的最大值。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数例1.当时,求的最大值。技巧三:分离例3.求的值域。技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t=x+1,化简原式在分离求最值。当,即t=时,(当t=2即x=1时取“=”号)。技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。2.已知,求函数的最大值.;3.,求函数的最大值.条件求最值1.若实数满足,则的最小值是.分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值,解:都是正数,≥当时等号成立,由及得即当时,的最小值是6.变式:若,求的最小值.并求x,y的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。2:已知,且,求的最小值。技巧七、已知x,y为正实数,且x2+eq\f(y2,2)=1,求xeq\r(1+y2)的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab≤eq\f(a2+b2,2)。同时还应化简eq\r(1+y2)中y2前面的系数为eq\f(1,2),xeq\r(1+y2)=xeq\r(2·eq\f(1+y2,2))=eq\r(2)x·eq\r(eq\f(1,2)+eq\f(y2,2))下面将x,eq\r(eq\f(1,2)+eq\f(y2,2))分别看成两个因式:x·eq\r(eq\f(1,2)+eq\f(y2,2))≤eq\f(x2+(eq\r(eq\f(1,2)+eq\f(y2,2)))2,2)=eq\f(x2+eq\f(y2,2)+eq\f(1,2),2)=eq\f(3,4)即xeq\r(1+y2)=eq\r(2)·xeq\r(eq\f(1,2)+eq\f(y2,2))≤eq\f(3,4)eq\r(2)技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=eq\f(1,ab)的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,