十年(2015-2024)高考真题数学分项汇编(全国真题)专题01 集合与常用逻辑完整版.pdf
上传人:文库****品店 上传时间:2024-09-10 格式:PDF 页数:16 大小:1.4MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

十年(2015-2024)高考真题数学分项汇编(全国真题)专题01 集合与常用逻辑完整版.pdf

十年(2015-2024)高考真题数学分项汇编(全国真题)专题01集合与常用逻辑完整版.pdf

预览

免费试读已结束,剩余 6 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题01集合与常用逻辑用语考点十年考情(2015-2024)命题趋势考点1集合间的基本关系2023·全国新Ⅱ卷、2020全国新Ⅰ卷(10年2考)2024·全国新Ⅰ卷、2024年全国甲卷、2023·北京卷、2023全国新Ⅰ卷、2022·全国新Ⅱ卷、2022考点2交集年全国乙卷、2022年全国甲卷、2022全国新Ⅰ(10年10考)卷、2021年全国乙卷、2021年全国甲卷、2021一般给两个集合,要求通过解不等年全国甲卷、2021全国新Ⅰ卷式求出集合,然后通过集合的运算2024·北京卷、2022·浙江卷、2021·北京卷、得出答案。考点3并集2020·山东卷、2019·北京卷、2017·浙江卷、(10年8考)2017·全国卷、2016·山东卷、2016·全国卷、2015·全国卷2024年全国甲卷、2023年全国乙卷、2023年全考点4补集国乙卷、2022·全国乙卷、2022·北京卷、2021全(10年8考)国新Ⅱ卷、2020全国新Ⅰ卷、2018·浙江卷、2018·全国卷、2017·北京卷2024·全国甲卷、2024·天津卷、2024·北京卷、考点5充分条常以关联的知识点作为命题背景,2023·北京卷、2023·全国甲卷、2023·天津卷件与必要条件考查充分条件与必要条件,难度随、2023·全国新Ⅰ卷、2022·浙江卷、2022·北京卷、(10年10考)载体而定。2021·全国甲卷考点6全称量全称量词命题和存在量词命题的2024·全国新Ⅱ卷、2020·全国新Ⅰ卷、2016·浙江词与存在量词否定及参数求解是高考复习和考卷、2015·浙江卷、2015·全国卷、2015·湖北卷(10年4考)查的重点。考点01集合间的基本关系1.(2023·全国新Ⅱ卷·高考真题)设集合A0,a,B1,a2,2a2,若AB,则a().2A.2B.1C.D.13【答案】B【分析】根据包含关系分a20和2a20两种情况讨论,运算求解即可.【详解】因为AB,则有:若a20,解得a2,此时A0,2,B1,0,2,不符合题意;若2a20,解得a1,此时A0,1,B1,1,0,符合题意;综上所述:a1.故选:B.2.(2020全国新Ⅰ卷·高考真题)已知aR,若集合M1,a,N1,0,1,则“a0”是“MN”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义即可求解.【详解】当a0时,集合M1,0,N1,0,1,可得MN,满足充分性,若MN,则a0或a1,不满足必要性,所以“a0”是“MN”的充分不必要条件,故选:A.考点02交集1.(2024·全国新Ⅰ卷高考真题)已知集合Ax∣5x35,B{3,1,0,2,3},则AB()A.{1,0}B.{2,3}C.{3,1,0}D.{1,0,2}【答案】A【分析】化简集合A,由交集的概念即可得解.【详解】因为Ax|35x35,B3,1,0,2,3,且注意到1352,从而AB1,0.故选:A.2.(2024年全国甲卷高考真题)若集合A1,2,3,4,5,9,Bxx1A,则AB()A.1,3,4B.2,3,4C.1,2,3,4D.0,1,2,3,4,9【答案】C【分析】根据集合B的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B中的元素x,满足x11,2,3,4,5,9,则x可能的取值为0,1,2,3,4,8,即B{0,1,2,3,4,8},于是AB{1,2,3,4}.故选:C3.(2023·北京·高考真题)已知集合M{x∣x20},N{x∣x10},则MN()A.{x∣2x1}B.{x∣2x1}C.{x∣x2}D.{x∣x1}【答案】A【分析】先化简集合M,N,然后根据交集的定义计算.【详解】由题意,M{x∣x20}{x|x2},N{x∣x10}{x|x1},根据交集的运算可知,MN{x|2x1}.故选:A4.(2023全国新Ⅰ卷高考真题)已知集合M2,1,0,1,2,Nxx2x60,则MN()A.2,1,0,1B.0,1,2C.2D.2【答案】C
立即下载