如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
七年级数学下册优秀教案七年级数学下册优秀教案作为一名默默奉献的教育工作者,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么教案应该怎么写才合适呢?以下是小编帮大家整理的七年级数学下册优秀教案,仅供参考,欢迎大家阅读。七年级数学下册优秀教案1本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。一.完成九年级下册的内容1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的.性质定理。3.加强学生对数学知识的认识方法,培养他们正确的学习方法。4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。二.本学期在提高教学质量上采取的措施。1.改进教学方法,采用启发式教学。2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。3.注意发展学生探索知识的能力,提高学生分析问题的能力。4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。5.鼓励合作学习,加强个别辅导,提高差生成绩。七年级数学下册优秀教案2[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念。对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一。创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二。认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点O,而且的两边分别是两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的`角分类位置关系数量关系教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质三。初步应用题目:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四。巩固运用例题:如图,直线a,b相交,求的度数。[巩固](教科书5页题目)已知,如图,求:的度数[小结]邻补角、对顶角。[作业]课本P9-1,2P10-7,8七年级数学下册优秀教案3一、整式※1.单项式①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。③一个单项式中,所有字母的指数和叫做这个单项式的次数。※2.多项式①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的`单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。※3.整式单项式和多项式统称为整式。二、整式的加减1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。2、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。三、同底数幂的乘法※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的