巧妙求和(1).doc
上传人:sy****28 上传时间:2024-09-14 格式:DOC 页数:5 大小:135KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

巧妙求和(1).doc

巧妙求和(1).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

博才个性化学习中心应老师:15067436433数学是打开科学大门的钥匙第8讲巧妙求和(一)一、专题简析若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、典型例题【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。项数=(52-4)÷6+1=9,即这个数列共有9项。疯狂操练等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。第100项=3+4×(100-1)=399.疯狂操练一等差数列,首项=3.公差=2.项数=10,它的末项是多少?求1.4,7,10……这个等差数列的第30项。求等差数列2.6,10,14……的第100项。【例题3】有这样一个数列:1.2.3.4,…,99,100。请求出这个数列所有项的和。【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。疯狂操练计算下面各题。(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60【例题4】求等差数列2,4,6,…,48,50的和。【思路导航】这个数列是等差数列,我们可以用公式计算。要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25首项=2.末项=50,项数=25等差数列的和=(2+50)×25÷2=650.疯狂操练计算下面各题。(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270【例题5】计算(2+4+6+…+100)-(1+3+5+…+99)【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。进一步分析还可以发现,这两个数列其实是把1~100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。(2+4+6+…+100)-(1+3+5+…+99)=(2-1)+(4-3)+(6-5)+…+(100-99)=1+1+1+…+1=50疯狂操练用简便方法计算下面各题。(2001+1999+1997+1995)-(2000+1998+1996+1994)(2+4+6+…+2000)-(1+3+5+…+1999)(3)(1+3+5+…+1999)-(2+4+6+…+1998)