三角形与四边形类比探究题(中考专题).doc
上传人:论文****可爱 上传时间:2024-09-12 格式:DOC 页数:16 大小:495KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

三角形与四边形类比探究题(中考专题).doc

三角形与四边形类比探究题(中考专题).doc

预览

免费试读已结束,剩余 6 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

三角形与四边形类比探究题(中考专题)三角形与四边形类比探究题(中考专题)三角形与四边形类比探究题(中考专题)类比探究解决类比探究问题的一般方法:1、根据题设条件,结合各问条件,先解决第一问;2、用解决第一问的方法类比解决下一问,如果不能,两问综合进行分析,找出不能类比的原因和不变特征,依据不变的特征,探索新的方法。类比探究:图形结构类似、问题类似、常含探究、类比等关键词。类比探究解题方法和思路1、找特征(中点、特殊角、折叠等),找模型:相似(母子型、A型、非A型、X型、非X型)三线合一、面积、全等三角形等;2、借助几问之间的联系,寻找条件和思路。3、照搬上一问的方法思路,解决问题,照搬辅助线、照搬全等、照搬相似等。4、找结构:寻找不变的结构,利用不变结构的特征解决问题。常见不变结构及方法:①直角:作横平竖直的线,找全等或相似;②中点:作倍长、通过全等转移边和角;③平行:找相似、转比例。5、哪些是不变的,哪些是变化的。哪些条件没有用,如何进行转化,寻找能够类比的方法和思路。1.如图所示,在正方形上连接等腰直角三角形和正方形,无限重复同一过程,第一个正方形的边长为1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,第n个正方形与第n个等腰直角三角形的面积和为Sn.(1)计算S1、S2、S3、S4.(2)总结出Sn与Sn﹣1的关系,并猜想出S1+S2+S3+S4+…+Sn与n的关系.2.(淄博)分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.3.将两个用钢丝设计成的能够完全重合的直角三角形模型ABC和直角三角形DEF按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且AB和DE、EF分别相交于点P、M,AC和DE相交于点N.(1)试判断线段AB和DE的位置关系,并说明理由;(2)若PD=AC,线段PE和BF有什么数量关系,请说明你的理由.4.如图,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针排列),点P为DE的中点,连PC,PF(1)如图①,点E在BC上,则线段PC、PF的数量关系为________,位置关系为_________(不证明).(2)如图②,将△BEF绕点B顺时针旋转a(O<a<45°),则线段PC,PF有何数量关系和位置关系?请写出你的结论,并证明.(3)如图③,△AEF为等腰直角三角形,且∠AEF=90°,△AEF绕点A逆时针旋转过程中,能使点F落在BC上,且AB平分EF,直接写出AE的值是_________.5.如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过点E作射线EF交AC于点F,使∠AEF=∠B.(1)判断∠BAE与∠CEF的大小关系,并说明理由;(2)请你探索:当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰直角△CDE,连接AD,(1)当点E运动过程中∠BCE与∠ACD的关系是________.(2)AD与BC有什么位置关系?说明理由.(3)四边形ABCD的面积是否有最大值?如果有,最大值是多少?如果没有,说明理由.7.直角三角形ABC中,∠C=90°,AC=BC,点P是三角形ABC内一点,且满足∠PAB=∠PBC=∠PCA,(1)判断PC与PB的位置关系,并对你的判断加以说明.(2)△ABP与△APC的面积比.8.(内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.9.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)证明:△BDF是等腰直角三角形.(2)猜想线段AD与CF之间的关系并证明.10.如图,等腰直角三角形ABC中,AC=BC,将△ABC绕斜边AB的中点O旋转至△DEF的位置,DF交AB于点P,DE交BC于点Q.请猜想OQ与OP有怎样的数量关系?并证明你的结论.11.(1)如图甲,直角