二次函数中的存在性问题(平行四边形).doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:4 大小:1.7MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

二次函数中的存在性问题(平行四边形).doc

二次函数中的存在性问题(平行四边形).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数的平行四边形问题一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)1.已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;⑶坐标平面内是否存在点,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.解:⑴对称轴是直线:,点B的坐标是(3,0).……2分⑵如图,连接PC,∵点A、B的坐标分别是A(-1,0)、B(3,0),∴AB=4.∴在Rt△POC中,∵OP=PA-OA=2-1=1,∴∴b=当时,∴∴⑶存在.理由:如图,连接AC、BC.设点M的坐标为.①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由⑵知,AB=4,∴|x|=4,.∴x=±4.∴点M的坐标为.②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90°.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3-1=2.∴点M的坐标为.综上所述,坐标平面内存在点,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为.2.已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则;(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.第(2)题xyBCODAMNN′xyBCOAMNP1P2备用图(1).(2)由题意得点与点′关于轴对称,,将′的坐标代入得,(不合题意,舍去),.,点到轴的距离为3.,,直线的解析式为,它与轴的交点为点到轴的距离为..(3)当点在轴的左侧时,若是平行四边形,则平行且等于,把向上平移个单位得到,坐标为,代入抛物线的解析式,得:(不舍题意,舍去),,.当点在轴的右侧时,若是平行四边形,则与互相平分,.与关于原点对称,,将点坐标代入抛物线解析式得:,(不合题意,舍去),,.存在这样的点或,能使得以为顶点的四边形是平行四边形.二、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等。1.已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值:(3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.解:(1)∵对称轴又∵OC=3OB=3,,∴C(0,-3)………2分方法一:把B(1,0)、C(0,-3)代入得:解得:∴方法二:∵B(1,0),∴A(-4,0)可令把C(0,-3)代入得:∴(2)方法一:过点D作DM∥y轴分别交线段AC和x轴于点M、N。∵=∵A(-4,0),C(0,-3)设直线AC的解析式为代入求得:令,当时,DM有最大值3此时四边形ABCD面积有最大值。方法二:过点D作DQ⊥y轴于Q,过点C作∥x轴交抛物线于,从图象中可判断当嗲D在下方的抛物线上运动时,四边形ABCD才有最大值。则==令则当时,四边形ABCD面积有最大值。(3)如图所示,讨论:①过点C作∥x轴交抛物线于点,过点作∥AC交x轴于点,此时四边形为平行四边形,∵C(0,-3)令得:∴。∴2.已知抛物线:(1)求抛物线的顶点坐标.(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式.(3)如下图,抛物线的顶点为P,轴上有一动点M,在、这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形,若存在,求出N点的坐标;若不存在,请说明理由.【提示:抛物线(≠0)的对称轴是顶点坐标是】解:(1)依题意∴,∴顶点坐标是(2,2)(2)根据题意可知y2解析式中的二次项系数为且y2的顶点坐标是(4,3)∴y2=-,即:y2=(3)符合条件的N点存在如图:若四边形OPMN为符合条件的平