山东省烟台市2023-2024学年高二下学期7月期末学业水平诊断数学答案.pdf
上传人:文库****品店 上传时间:2024-09-12 格式:PDF 页数:4 大小:209KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

山东省烟台市2023-2024学年高二下学期7月期末学业水平诊断数学答案.pdf

山东省烟台市2023-2024学年高二下学期7月期末学业水平诊断数学答案.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023~2024学年度第二学期期末学业水平诊断高二数学参考答案及评分标准一、选择题CCADBDCA二、选择题9.ABD10.BCD11.AC三、填空题1423−80(−∞,]()n−1LL212.13.e14.3,45四、解答题15.解:(1)根据已知条件,可得:获奖没有获奖合计选修阅读课程81220不选阅读课程22830合计104050······················································3分零假设为H:创新作文比赛获奖与选修阅读课程无关联,0根据列联表中数据计算得到,50×(8×28−2×12)225χ2==≈8.333>7.879.·······························6分20×30×10×403根据小概率值α=0.005的独立性检验,推断H不成立,即认为创新作文比赛获奖与0选修阅读课程有关联,此推断犯错误的概率不大于0.005.····························7分(2)由题意可知X的可能取值为1,2,3,则···································8分C1C21C2C17P(X=1)=82=,P(X=2)=8=2,C315C3151010C37P(X=3)=8=,········································11分C31510所以,随机变量X的分布列为:X123177P15151517712E(X)=×1+2×+3×=.··························13分所以151515516.解:(1)当a=−2时,f(x)=(x2−2x+1)ex,所以f′(=x)(x2−1)ex.·········1分(x,y)y=(x2−2x+1)ex=k(x2−1)ex设切点为,则0,0,000000高二数学答案(,)y−(x2−2x+1)ex=(x2−1)ex(x−x)所以,切线方程为00.························3分0000将(1,0)代入得(x−1)2x=0,解得x=0或x=1.·····························5分0000故过(1,0)的切线方程为y=0或x+y−1=0.················································7分(2)f′(x)=(2x+a)ex+(x2+ax+1)ex=(x+a+1)(x+1)ex.·····················8分当a=0时,f′(x=)(x+1)2ex,恒有f′(x)≥0,函数f(x)单调递增.·········10分当a>0时,−a−1<−1,当x∈(−∞,−a−1),或x∈(−1,+∞)时,f′(x)>0,函数f(x)单调递增,当x∈(−a−1,−1)时,f′(x)<0,函数f(x)单调递减.····12分当a<0时,−a−1>−1,当x∈(−∞,−1),或x∈(−a−1,+∞)时,f′(x)>0,函数f(x)单调递增,当x∈(−1,−a−1)时,f′(x)<0,函数f(x)单调递减.·······14分综上,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(−∞,−a−1),(−1,+∞)上单调递增,在(−a−1,−1)上单调递减,当a<0时,f(x)在(−∞,−1),(−a−1,+∞)上单调递增,在(−1,−a−1)上单调递减.······························15分17.解:(1)由题意可知,b−b=a,即b−1=−1,故b=0.························1分21222由b−b=a,可得a=1.······················································2分3233所以数列{a}的公差d=2,所以a=−1+2(n−2)=2n−5.······················3分nn由b−b=a,b−b=a,,b−b=a,nn−1nn−1n−2n−1212(n−1)(−1+2n−5)叠加可得b−b=a+a++a=,n123n2整理可得b=n2−4n+4(n≥2);当n=1时,满足上式,n所以b=n2−4n+4················································································5分n(n−2)2+5(2)不妨设