三角形的性质教案精品多篇.docx
上传人:lj****88 上传时间:2024-09-13 格式:DOCX 页数:23 大小:24KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

三角形的性质教案精品多篇.docx

三角形的性质教案精品多篇.docx

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

三角形的性质教案精品多篇[概述]三角形的性质教案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。初中数学等腰三角形性质教学设计篇一一、教学目的使学生熟练地掌握等腰三角形的性质.二、教学重点、难点重点:等腰三角形性质的应用.难点:添加合适的辅助线.三、教学过程复习提问1.等腰三角形的性质.2.等腰三角形的底角一定是_角?3.等腰三角形的底角为20°,求它的顶角度数.引入新课等腰三角形一腰上的中线把它的周长分为15cm和6cm的两部分,求这三角形各边的长.学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:在图1中,AB=AC,D为AB的中点(即AD=DB),设AD=xcm,则AB=AC=2cm(中线定义).由AC+AD=15cm,得2x+x=15.解得x=5,……本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.新课例2已知:图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.例3已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.小结1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).2.对于等腰三角形的”三线合一”性要灵活运用.练习:略作业:略思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.四、教学注意问题1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.2.要防止“三线合一”性在应用中出现的错误.角形的性质教案篇二教学建议知识结构重点、难点分析相似三角形的性质及应用是本节的重点也是难点.它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.教法建议1。教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等2。教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答3。在知识的巩固中要注意与全等三角形的对比(第1课时)一、教学目标1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美二、教法引导先学后教,达标导学三、重点及难点1.教学重点:是性质定理1的应用.2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具.六、教学步骤[复习提问]1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?[讲解新课]根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的'其他性质(见图).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比∽,教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.分析示意图:结论→∽(欠缺条件)→∽(已知)∽,BM=MC,∽,以上两种情况的证明可由学生完成.[小结]本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.七、布置作业教材P241中3、教材P247中A