高考理科数学知识点整理.docx
上传人:努力****绮亦 上传时间:2024-09-13 格式:DOCX 页数:26 大小:26KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高考理科数学知识点整理.docx

高考理科数学知识点整理.docx

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考理科数学知识点整理高考理科数学知识点整理在学习中,说起知识点,应该没有人不熟悉吧?知识点就是一些常考的内容,或者考试经常出题的地方。哪些才是我们真正需要的知识点呢?下面是小编整理的高考理科数学知识点整理,仅供参考,大家一起来看看吧。高考理科数学知识点整理1一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1.x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根立体图形及平面图形的公式圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=pi.r2h图形周长、面积、体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长高考理科数学知识点整理2高考理科数学知识点之导数公式1.y=c(c为常数)y=02.y=x^ny=nx^(n-1)3.y=a^xy=a^xlnay=e^xy=e^x4.y=logaxy=logae/xy=lnxy=1/x5.y=sinxy=cosx6.y=cosxy=-sinx7.y=tanxy=1/cos^2x8.y=cotxy=-1/sin^2x9.y=arcsinxy=1/√1-x^210.y=arccosxy=-1/√1-x^211.y=arctanxy=1/1+x^212.y=arccotxy=-1/1+x^2高考理科数学知识点整理3定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。高考理科数学知识点整理4高三年级数学必考知识点①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分