湘教初中数学九下《25-直线与圆的位置关系-》word教案-(1).docx
上传人:论文****酱吖 上传时间:2024-09-11 格式:DOCX 页数:4 大小:42KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

湘教初中数学九下《25-直线与圆的位置关系-》word教案-(1).docx

湘教初中数学九下《25-直线与圆的位置关系-》word教案-(1).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3.2点、直线与圆的位置关系,圆的切线3.2.1点、直线与圆的位置关系教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r及其运用.2.理解直线与圆有相交、相切、相离三种位置关系.3、了解切线的概念,探索切线与过切点的直径之间的关系.能力训练要求1.经历探索直线与圆位置关系的过程,培养学生的探索能力.2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.情感与价值观要求通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点经历探索直线与圆位置关系的过程.理解直线与圆的三种位置关系.了解切线的概念以及切线的性质.教学难点经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.探索圆的切线的性质.教学过程Ⅰ.创设问题情境,引入新课教学过程(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径.Ⅱ.新课讲解(一)点与圆的位置关系:由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外d>r点P在圆上d=r点P在圆内d<r设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外d>r点P在圆上d=r点P在圆内d<r反过来,也十分明显,如果d>r点P在圆外;如果d=r点P在圆上;如果d<r点P在圆内.因此,我们可以得到:这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.(二)类比地学习直线和圆的位置关系.1.复习点到直线的距离的定义[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.2.探索直线与圆的三种位置关系[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.演示:作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?[生]有三种位置关系:[师]直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离.当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangentline).当直线与圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线,.当直线与圆没有公共点时,叫做直线和圆相离.因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?[生]当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.[师]能否根据点和圆的位置关系,点到圆心的距离d(垂线段)和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.投影片(1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.(2)从点到直线的距离d与半径r的大小关系来判断:d<r时,直线与圆相交;d=r时,直线与圆相切;d>r时,直线与圆相离.投影片[例1]已知圆O的半径r=3,圆心O到直线l的距离d=2,判断直线l与圆O的位置关系。[例2]已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2