(完整word版)文科高中数学所有知识点(定稿)-推荐文档.doc
上传人:斌斌****公主 上传时间:2024-09-11 格式:DOC 页数:26 大小:6.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)文科高中数学所有知识点(定稿)-推荐文档.doc

(完整word版)文科高中数学所有知识点(定稿)-推荐文档.doc

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中文科数学知识点必修1数学知识点集合:1、集合的定义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合中的元素2、集合元素的特征:①确定性②互异性③无序性3、集合的分类:①有限集②无限集③空集,记作4、集合的表示法:①列举法②描述法③文氏图法④特殊集合⑤区间法常用数集及其记法:①自然数集(或非负整数集)记为正整数集记为或②整数集记为③实数集记为④有理数集记为5、元素与集合的关系:①属于关系,用“”表示;②不属于关系,用“”表示6、集合间的关系:①包含:用“”表示②真包含:用“”表示③相等④不相等7、集合的交、并、补交集的定义:由所有属于集合且属于集合的元素组成的集合,叫做与的交集,记作,即并集的定义:由所有属于集合或属于集合的元素组成的集合,叫做与的并集,记作,即8、全集与补集:对于一个集合,由全集中不属于的所有元素组成的集合称为集合相对于集合的补集,记作,即9、交集、并集、补集的运算:(1)交换律:(2)结合律:(3)分配律:.(4)0-1律:(5)等幂律:(6)求补律:(7)反演律:UCUAA10、文氏图的应用:交集、并集、补集的文氏图表示ABA∩BA∪B11、重要的等价关系:12、一个由个元素组成的集合有个不同的子集,其中有个非空子集,也有个真子集函数:1、映射:设是两个集合,如果按照某种对应法则,对于集合中的任何一个元素,在集合中都有唯一的元素和它对应,则这样的对应(包括集合以及到的对应法则)叫做从集合到集合的映射,记作,其中叫做的象,叫做的原象如果在这个映射下,对于集合中的不同元素,在集合中有不同的象,而且中的每一个元素都有原象,那么这个映射叫做到上的一一映射函数:设是两个非空数集,那么从到的映射就叫做函数,记作,其中,叫做自变量,是的函数值.自变量的取值集合叫做函数的定义域,函数值的集合叫做函数的值域,值域,函数三要素:定义域、值域、对应法则;两个函数相同:定义域和对应关系都分别相同3、函数的表示方法:(1)列表法(2)图象法(3)解析法4、分段函数:在自变量的不同取值范围内,其解析式不同,分段函数不是几个函数,是一个函数5、(1)函数的定义域的常用求法:=1\*GB3①分式的分母不等于零=2\*GB3②偶次方根的被开方数大于等于零=3\*GB3③对数的真数大于零=4\*GB3④指数函数和对数函数的底数大于零且不等于1=5\*GB3⑤三角函数正切函数中,余切函数中,=6\*GB3⑥如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围(2)值域的求法:=1\*GB3①直接法=2\*GB3②分离常数法=3\*GB3③图象法=4\*GB3④换元法⑤判别式法=6\*GB3⑥不等式与对勾函数6、求函数解析式的方法:①直代②凑配法=3\*GB3③换元法④待定系数法⑤列方程组法⑥特殊值法7、增减函数的定义:对于函数的定义域内某个区间上的任意两个自变量的值①若当时,都有,则说在这个区间上是增函数②若当时,都有,则说在这个区间上是减函数8、(1)单调性的证明:讨论函数的增减性应先确定单调区间,用定义证明函数的增减性,有“一设,二差,三判断”三个步骤(2)函数单调性的常用结论:①若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数②若为增(减)函数,则为减(增)函数=3\*GB3③若与的单调性相同,则是增函数;若与的单调性不同,则是减函数,即复合函数的单调性是“同增异减”④奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反9、(1)奇、偶函数的定义:对于函数①如果对于函数定义域内任意一个,都有,那么函数就叫做偶函数②如果对于函数定义域内任意一个,都有,那么函数就叫做奇函数注意:=1\*GB3①函数为奇偶函数的前提是定义域在数轴上关于原点对称=2\*GB3②是定义域上的恒等式③若奇函数在处有意义,则④奇函数的图像关于原点成中心对称图形,偶函数的图象关于轴成轴对称图形(2)函数奇偶性的常用结论:①如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)②两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数=3\*GB3③一个奇函数与一个偶函数的积(商)为奇函数④两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数基本初等函数1、(1)一般地,如果,那么叫做的次方根。其中①负数没有偶次方根②0的任何次方根