二次函数复习教学反思(精选5篇).docx
上传人:lj****88 上传时间:2024-09-13 格式:DOCX 页数:12 大小:18KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

二次函数复习教学反思(精选5篇).docx

二次函数复习教学反思(精选5篇).docx

预览

免费试读已结束,剩余 2 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数复习教学反思(精选5篇)小编为你精心整理了5篇《二次函数复习教学反思》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《二次函数复习教学反思》相关的范文。篇1:二次函数复习教学反思本节课重点是,结合图象分析二次函数的有关性质,查缺补漏,进一步理解掌握二次函数的基础知识。要想灵活应用基础知识解答二次函数问题,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,与生活实际密切联系,学生对生活中的“二次函数”感知颇浅,针对学生的认知特点,设计时做了如下思考:一、按知识发展与学生认知顺序,设计教学流程:首先通过复习本章的知识结构让学生从整体上掌握本章所学习的内容,从而才能在此基础上运用自如,如鱼得水;二、教学过程中注重引导学生对数学思想应用基础知识解答,然后小组进行交流讨论,老师点评,起到很好的效果。这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和于探究,形成良好的学习品质。数学教学活动是师生积极参与、交往互动、共同发展的过程,从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得数学的基础知识、基本技能、基本思想和基本活动经验,促使学生主动地学习,不断提高发现提出问题、分析问题和解决问题的能力;设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:(1)如何使他们愿意学,喜欢学,对数学感兴趣?(2)如何让学生体验成功的喜悦,从而增强自信心?(3)如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?(4)培养学生合作学习的互助精神和独立解决问题的能力。篇2:二次函数复习课教学反思今天开始复习二次函数,以往在讲练习课的时候,学生总感觉自己已经懂了,上课的效率很差.现在如果还是和原来那样复习,效率肯定不会好.以往采取的方式就是布置给学生大量的作业,然后再进行适当的讲评.可是总觉的那种方式也不理想,一方面浪费时间,另一方面学生也不可能高质量完成.今天复习的时候给自己定了一个复习计划.对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备.从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程.对于二次函数的综合运用还存在一定问题.同时还有求函数解析式,对于顶点式,和一般式也有一定的问题.利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调.一、本章知识点的主要内容有:1.二次函数的概念.考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数.2.求二次函数的解析式.用待定系数法求,设有三种形式,一般形式,分解式,配方式.另外还有根据实际问题求解析式.特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少.为了获得最大的利润,应该怎样定价格.这种是典型的二次函数解决实际问题的类型.同样的背景在八年级的时候也有出现,通过一元二次方程解决.3.二次函数图像的信息题.根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等.同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零.4.抛物线的平移.抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置.所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”.5.根据图像来判断一些代数式的符号.主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和-1时的函数值来确定.二、成功之处:教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。三、精彩之处:(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:1.通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?2.在不改变已知条件的前提下,你能选用“一般式”吗?设计意图是:1.由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6.从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”.2.挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=-1对称点p’的坐标是(-4,3);(2)用点A、点p和对称轴;(3)用点A、点p和顶点的纵