二次函数教学反思精编.docx
上传人:一只****写意 上传时间:2024-09-13 格式:DOCX 页数:29 大小:30KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

二次函数教学反思精编.docx

二次函数教学反思_1.docx

预览

免费试读已结束,剩余 19 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数教学反思二次函数教学反思15篇作为一位到岗不久的教师,我们需要很强的课堂教学能力,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写呢?下面是小编为大家整理的二次函数教学反思,欢迎阅读,希望大家能够喜欢。二次函数教学反思1复习目标:知识目标:1、了解二次函数解析式的三种表示方法,抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;2、一元二次方程与抛物线的关系.3、利用二次函数解决实际问题。技能目标:培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。复习重、难点:函数综合题型复习方法:合作交流复习过程:一、知识梳理1、二次函数解析式的三种表示方法:(1)顶点式:(2)交点式:(3)一般式:2、填表:抛物线对称轴顶点坐标开口方向y=ax2当a>0时,开口当a<0时,开口Y=ax2+kY=a(x-h)2y=a(x-h)2+kY=ax2+bx+c3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值自评分(每空4分,共100分)二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)(屏幕显示)已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:(1)abc(2)b2-4ac(3)2a+b(4)a+b+c(上题主要考查学生对二次函数的'图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x=1时y的值)2、已知抛物线y=x2+(2k+1)x-k2+k(1)求证:此抛物线与x轴总有两个不同的交点;(2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22=-2k2+2k+1,①求抛物线的解析式②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。(此题主要考查抛物线与一元方程的根的判别式、根与系数的关系的联系,以及函数与几何知识的综合)三、归纳小结:提问:通过本节课的练习,你得到了什么?四、用数学(利用二次函数解决实际问题)一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,(1)根据题意建立直角坐标系,并求出抛物线的解析式。(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?(此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。)五、拓展提升(供学有余力的学生做):(屏幕显示)已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0),B(x2,0),(x1≠x2)(1)求a的取值范围,并证明A、B两点都在原点的左侧;(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。课堂反思:以前的复习课总是写满几块小黑板,弄得手上全是粉笔末,一节课下来,光是翻转小黑板就把自己搞得迷迷糊糊,并且学生还喊道:看不清楚。现在好了,利用多媒体,可以把要讲的知识点、学生要做的练习毫不含糊地全部展示给学生,确实做到了高容量、大密度。感觉很好。二次函数教学反思2因教研组活动的安排需要,本周二我作为初四代表出示研讨课,课题为《二次函数的应用——————形如抛物线型》,结合老师的评课反思一下:我的设计思路是:前置补偿(确定二次函数解析式的方法和思路)———————探索新知(由前置补偿第四小题过渡到问题一,目的在于体会数学与实际问题的转化,并得出确定实际问题中解析式的关键在于有实际意义得出关键点的坐标;然后过渡到没有坐标系的实际问题中,该怎么处理,有学生探索并分情况展示,然后比较过程与结果,增强优化意识。另一方面由实际问题的解决,体会二次函数应用中的数学思想:第一环节,实际意义—→关键点的'坐标—→解析式,注意由实际意义到点的坐标转化时的符号,进一步明确解决问题的第二个环节,解析式—→关键点的坐标—→实际意义,注意由坐标到实际意义转化时要取绝对值。)—————活学活用(解决一个隧道问题,目的加强对思路的理解与体会,从本节课上也提高一下难度,但因时间关系,没有完成)。评课整理如下:优点:思路比较清晰,过渡比较自然,题后