初中数学等腰三角形性质教学设计(精品多篇).docx
上传人:lj****88 上传时间:2024-09-14 格式:DOCX 页数:13 大小:18KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

初中数学等腰三角形性质教学设计(精品多篇).docx

初中数学等腰三角形性质教学设计(精品多篇).docx

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初中数学等腰三角形性质教学设计(精品多篇)[说明]初中数学等腰三角形性质教学设计(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。初中数学等腰三角形性质教学设计篇一一、教学目的使学生熟练地掌握等腰三角形的性质.二、教学重点、难点重点:等腰三角形性质的应用.难点:添加合适的辅助线.三、教学过程复习提问1.等腰三角形的性质.2.等腰三角形的底角一定是_角?3.等腰三角形的底角为20°,求它的顶角度数.引入新课等腰三角形一腰上的中线把它的周长分为15cm和6cm的两部分,求这三角形各边的长.学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:在图1中,AB=AC,D为AB的中点(即AD=DB),设AD=xcm,则AB=AC=2cm(中线定义).由AC+AD=15cm,得2x+x=15.解得x=5,……本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.新课例2已知:图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.例3已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.小结1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).2.对于等腰三角形的”三线合一”性要灵活运用.练习:略作业:略思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.四、教学注意问题1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.2.要防止“三线合一”性在应用中出现的错误.初中数学等腰三角形性质教学设计篇二一、教材分析1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。2、教学重、难点:重点:等腰三角形性质的探索及其应用。难点:等腰三角形性质的探索及证明。3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。二、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。三、教法分析《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。四、学法建构《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。五、教学模式本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,提高学生的自主意识和合作精神。六、教学程序和设想《数学课程标准》强调,教师应发扬教学民主,成为学生