如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
流体流动–––基本概念与基本原理流体静力学基本方程式或注意:1、应用条件:静止的连通着的同一种连续的流体。2、压强的表示方法:绝压—大气压=表压表压常由压强表来测量;大气压—绝压=真空度真空度常由真空表来测量。3、压强单位的换算:1atm=760mmHg=10.33mH2O=101.33kPa=1.033kgf/cm2=1.033at4、应用:水平管路上两点间压强差与U型管压差计读数R的关系:处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体。二、定态流动系统的连续性方程式––––物料衡算式三、定态流动的柏努利方程式––––能量衡算式1kg流体:[J/kg]讨论点:1、流体的流动满足连续性假设。2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp/p1<20%,仍可用上式,且ρ=ρm。4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。5、流体密度ρ的计算:理想气体ρ=pM/RT混合气体混合液体上式中:––––体积分率;––––质量分率。6、gz,u2/2,p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。∑hf为流经系统的能量损失。We为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。输送设备有效功率Ne=We·ws,轴功率N=Ne/η(W)7、1N流体[m](压头)1m3流体,柏努利式中的∑hf流动类型:1、雷诺准数Re及流型Re=duρ/μ,μ为动力粘度,单位为[Pa·s];层流:Re≤2000,湍流:Re≥4000;2000<Re<4000为不稳定过渡区。2、牛顿粘性定律τ=μ(du/dy)气体的粘度随温度升高而增加,液体的粘度随温度升高而降低。3、流型的比较:①质点的运动方式;②速度分布,层流:抛物线型,平均速度为最大速度的0.5倍;湍流:碰撞和混和使速度平均化。③阻力,层流:粘度内摩擦力,湍流:粘度内摩擦力+湍流应力。流体在管内流动时的阻力损失[J/kg]1、直管阻力损失hf范宁公式(层流、湍流均适用).层流:哈根—泊稷叶公式。湍流区(非阻力平方区):;高度湍流区(阻力平方区):,具体的定性关系参见摩擦因数图,并定量分析hf与u之间的关系。推广到非圆型管注:不能用de来计算截面积、流速等物理量。2、局部阻力损失h′f①阻力系数法,②当量长度法,注意:截面取管出口内外侧,对动能项及出口阻力损失项的计算有所不同。当管径不变时,流体在变径管中作稳定流动,在管径缩小的地方其静压能减小。流体在等径管中作稳定流动流体由于流动而有摩擦阻力损失,流体的流速沿管长不变。流体流动时的摩擦阻力损失hf所损失的是机械能中的静压能项。完全湍流(阻力平方区)时,粗糙管的摩擦系数数值只取决于相对粗糙度。水由敞口恒液位的高位槽通过一管道流向压力恒定的反应器,当管道上的阀门开度减小时,水流量将减小,摩擦系数增大,管道总阻力不变。传热–––基本概念和基本理论传热是由于温度差引起的能量转移,又称热传递。由热力学第二定律可知,凡是有温度差存在时,就必然发生热从高温处传递到低温处。根据传热机理的不同,热传递有三种基本方式:热传导(导热)、热对流(对流)和热辐射。热传导是物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递;热对流是流体各部分之间发生相对位移所引起的热传递过程(包括由流体中各处的温度不同引起的自然对流和由外力所致的质点的强制运动引起的强制对流),流体流过固体表面时发生的对流和热传导联合作用的传热过程称为对流传热(给热);热辐射是因热的原因而产生的电磁波在空间的传递。任何物体只要在绝对零度以上,都能发射辐射能,只是在高温时,热辐射才能成为主要的传热方式。传热可依靠其中的一种方式或几种方式同时进行。传热速率Q是指单位时间通过传热面的热量(W);热通量q是指每单位面积的传热速率(W/m2)。热传导导热基本方程––––傅立叶定律λ––––导热系数,表征物质导热能力的大小,是物质的物理性质之一,单位为W/(m·℃)。纯金属的导热系数一般随温度升高而降低,气体的导热系数随温度升高而增大。式中负号表示热流方向总是和温度剃度的方向相反。2.平壁的稳定热传导单层平壁:多层(n层)平壁:公式表明导热速率与导热推动力(温度差)成正比,与导热热阻(R)成反比。由多层等厚平壁构成的导热壁面中所用材料的导热系数愈大,则该壁面的热阻愈小,其两侧的温差愈小,但导热速率相同。圆筒壁的稳定热传导单层圆筒壁:或当S2/S12时,用对数平均值,即:当S2/S12时,用算术平均值,即:Sm=(S1+S2)/2多层(n层)圆筒壁: