机器人视觉 课件9-Robot Vison-2-Transformation.pdf
上传人:yy****24 上传时间:2024-09-10 格式:PDF 页数:12 大小:11.2MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

机器人视觉 课件9-Robot Vison-2-Transformation.pdf

机器人视觉课件9-RobotVison-2-Transformation.pdf

预览

免费试读已结束,剩余 2 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

19RobotVision-Transformation2012/9/11ROBOTVISIONHuang-NanHuang2012/9/112012/9/112012AutumnContentsDiscreteTransform32012/9/1142012/9/11ImagetransformDiscreteTransformFourierTransformDiscreteCosineTransformWaveletTransformHere,theimagedataaremappedfromthespatialdomaintothefrequencydomain,alsoviewedasthefactthatatransformmapsimagedataintoadifferentmathematicalspaceviaatransformationequation;whereallthepixelsintheinput(spatialdomain)contributetoeachvalueintheoutput(frequencydomain).IntroductiontotheFourierTransform52012/9/1162012/9/11ThediscreteformofthosetransformiscreatedbysamplingTheOne-DimensionalFourierTransformanditsInversethecontinuousarebased,i.e.,thebasisfunctions,andsuchfunctionsaretypicallysinusoidalorrectangular.Eachvalueinthefrequencydomainisalinearsumofbasisfunctions.Thebasicfunctionsaresampledandthenprovideduswithbasisvectorfor1-Dcase.Ifweextendtheseinto2-Dcase,asforimage,suchdiscretebasicfunctionsarecalledbasismatricesorbasisimages.Theprocessoftransformingtheimagedataintoanotherdomainamountstoprojectingtheimageontobasisimages.Why?Two-DimDiscreteFourierTransform72012/9/1182012/9/11Filteringinthefrequencydomain92012/9/11102012/9/112012/9/112012/9/111112FastFourierTransform132012/9/11142012/9/11DiscreteFourierTranform2012/9/11162012/9/1115Fourierspectrum172012/9/11182012/9/11Matlab-fft2,fftshift,ifft2DiscreteCosineTranform192012/9/11202012/9/112012/9/112012/9/1121222D232012/9/112012/9/11242012/9/112012/9/112526272012/9/112012/9/11“f(x,y)–128”modifies[0,255]to[-128,127]inordertoreducethemaximumbitnumberneededtorepresenttheDC(i.e.,c(0,0))term.28Featuresof2D-DCTMatlab-dct2,idct2292012/9/11302012/9/11Frequency:number(ordegree)ofalternating(交錯)ofbasisimagesthedistributionoffrequencyforbasisimage.WaveletTransform312012/9/112012/9/11Similartosub-bandcoding.Advantages:1.Thecompressionefficiencyofeachsubbandsignalismo