九年级圆基础的知识点-(圆讲义).doc
上传人:fu****级甜 上传时间:2024-09-10 格式:DOC 页数:10 大小:1.4MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

九年级圆基础的知识点-(圆讲义).doc

九年级圆基础的知识点-(圆讲义).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

实用标准文档精彩文案一对一授课教案学员姓名:____何锦莹____年级:_____9_____所授科目:___数学__________上课时间:____年月日____时分至____时___分共___小时老师签名唐熠学生签名教学主题圆上次作业检查完成很好本次上课表现本次作业授课内容:圆的相关概念,基础知识板块一:圆的有关概念一、圆的定义:1.描述性定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定端点叫做圆心,叫做半径.2圆的表示方法:通常用符号表示圆,定义中以为圆心,为半径的圆记作“”,读作“圆”.3同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.二、弦和弧1.弦:连结圆上任意两点的线段叫做弦.2.直径:经过圆心的弦叫做圆的直径,直径等于半径的倍.3.弦心距:从圆心到弦的距离叫做弦心距.4.弧:圆上任意两点间的部分叫做圆弧,简称弧.以为端点的圆弧记作,读作弧.5.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.6.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.7.优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.8.弓形:由弦及其所对的弧组成的图形叫做弓形.三、圆心角和圆周角1.圆心角:顶点在圆心的角叫做圆心角.将整个圆分为等份,每一份的弧对应的圆心角,我们也称这样的弧为的弧.圆心角的度数和它所对的弧的度数相等.2.圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.3.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.板块二:圆的对称性与垂径定理一、圆的对称性1.圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线.2.圆的中心对称性:圆是中心对称图形,对称中心是圆心.3.圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合.二、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2:圆的两条平行弦所夹的弧相等.练习题;1.判断:(1)直径是弦,是圆中最长的弦。()(2)半圆是弧,弧是半圆。()(3)等圆是半径相等的圆。()(4)等弧是弧长相等的弧。()(5)半径相等的两个半圆是等弧。()(6)等弧的长度相等。()2.P为⊙O内与O不重合的一点,则下列说法正确的是()A.点P到⊙O上任一点的距离都小于⊙O的半径B.⊙O上有两点到点P的距离等于⊙O的半径C.⊙O上有两点到点P的距离最小D.⊙O上有两点到点P的距离最大3.以已知点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个4.以已知点O为圆心,已知线段a为半径作圆,可以作()A.1个B.2个C.3个D.无数个5、如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.5.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这圆的半径是cm.6.圆上各点到圆心的距离都等于,到圆心的距离等于半径的点都在.7.如图,点C在以AB为直径的半圆上,∠BAC=20°,∠BOC等于()A.20°B.30°C.40°D.50°8、如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.9.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是().A.CE=DEB.C.∠BAC=∠BADD.AC>AD(5)(1)(2)(3)(4)10.如图2,⊙O的直径