二次函数图像与性质专题复习.doc
上传人:可爱****乐多 上传时间:2024-09-09 格式:DOC 页数:6 大小:189KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

二次函数图像与性质专题复习.doc

二次函数图像与性质专题复习.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数得图像与性质一、二次函数得基本形式1、二次函数基本形式:得性质:a得绝对值越大,抛物线得开口越小。得符号开口方向顶点坐标对称轴性质向上轴时,随得增大而增大;时,随得增大而减小;时,有最小值.向下轴时,随得增大而减小;时,随得增大而增大;时,有最大值.2、得性质:上加下减。得符号开口方向顶点坐标对称轴性质向上轴时,随得增大而增大;时,随得增大而减小;时,有最小值.向下轴时,随得增大而减小;时,随得增大而增大;时,有最大值.3、得性质:左加右减。得符号开口方向顶点坐标对称轴性质向上X=h时,随得增大而增大;时,随得增大而减小;时,有最小值.向下X=h时,随得增大而减小;时,随得增大而增大;时,有最大值.4、得性质:得符号开口方向顶点坐标对称轴性质向上X=h时,随得增大而增大;时,随得增大而减小;时,有最小值。向下X=h时,随得增大而减小;时,随得增大而增大;时,有最大值。二、二次函数图象得平移1、平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线得形状不变,将其顶点平移到处,具体平移方法如下:2、平移规律在原有函数得基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减"。方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)三、二次函数与得比较从解析式上瞧,与就是两种不同得表达形式,后者通过配方可以得到前者,即,其中。四、二次函数图象得画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取得五点为:顶点、与轴得交点、以及关于对称轴对称得点、与轴得交点,(若与轴没有交点,则取两组关于对称轴对称得点)、画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴得交点,与轴得交点、五、二次函数得性质1、当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随得增大而减小;当时,随得增大而增大;当时,有最小值.2、当时,抛物线开口向下,对称轴为,顶点坐标为。当时,随得增大而增大;当时,随得增大而减小;当时,有最大值.六、二次函数解析式得表示方法1、一般式:(,,为常数,);2、顶点式:(,,为常数,);3、两根式:(,,就是抛物线与轴两交点得横坐标)、注意:任何二次函数得解析式都可以化成一般式或顶点式,但并非所有得二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线得解析式才可以用交点式表示。二次函数解析式得这三种形式可以互化、七、二次函数得图象与各项系数之间得关系1、二次项系数二次函数中,作为二次项系数,显然。⑴当时,抛物线开口向上,得值越大,开口越小,反之得值越小,开口越大;⑵当时,抛物线开口向下,得值越小,开口越小,反之得值越大,开口越大.总结起来,决定了抛物线开口得大小与方向,得正负决定开口方向,得大小决定开口得大小.2、一次项系数在二次项系数确定得前提下,决定了抛物线得对称轴.⑴在得前提下,当时,,即抛物线得对称轴在轴左侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得右侧。⑵在得前提下,结论刚好与上述相反,即当时,,即抛物线得对称轴在轴右侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得左侧。总结起来,在确定得前提下,决定了抛物线对称轴得位置.得符号得判定:对称轴在轴左边则,在轴得右侧则,概括得说就就是“左同右异”总结:3、常数项⑴当时,抛物线与轴得交点在轴上方,即抛物线与轴交点得纵坐标为正;⑵当时,抛物线与轴得交点为坐标原点,即抛物线与轴交点得纵坐标为;⑶当时,抛物线与轴得交点在轴下方,即抛物线与轴交点得纵坐标为负。总结起来,决定了抛物线与轴交点得位置。总之,只要都确定,那么这条抛物线就就是唯一确定得.二次函数解析式得确定:根据已知条件确定二次函数解析式,通常利用待定系数法。用待定系数法求二次函数得解析式必须根据题目得特点,选择适当得形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点得坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴得两个交点得横坐标,一般选用两根式;4、已知抛物线上纵坐标相同得两点,常选用顶点式。八、二次函数图象得对称二次函数图象得对称一般有五种情况,可以用一般式或顶点式表达1、关于轴对称关于轴对称后,得到得解析式就是;关于轴对称后,得到得解析式就是;2、关于轴对称关于轴对称后,得到得解析式就是;关于轴对称后,得到得解析式就是;3、关于原点对称关于原点对称后,得到得解析式就是;关于原点