2021年秋人教版九年级上册第21章一元二次方程达标检测卷(解析版).pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:10 大小:463KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021年秋人教版九年级上册第21章一元二次方程达标检测卷(解析版).pdf

2021年秋人教版九年级上册第21章一元二次方程达标检测卷(解析版).pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第21章一元二次方程达标检测卷一.选择题(共10小题).1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±22.将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为()A.2,9B.2,7C.2,﹣9D.2x2,﹣9x3.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.54.以x=为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=05.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=76.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.已知(x2+y2)(x2+y2﹣4)=5,则x2+y2的值为()A.1B.﹣1或5C.5D.1或﹣58.有一只鸡患了禽流感,经过两轮传染后共有625只鸡患了禽流感,每轮传染中平均一只鸡传染()只鸡.A.22B.24C.25D.269.已知P=m﹣1,Q=m2﹣m(m为任意实数),则P与Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定10.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6二.填空题(共8小题,满分32分,每小题4分)11.下列方程中,①7x2+6=3x;②=7;③x2﹣x=0;④2x2﹣5y=0;⑤﹣x2=0中是一元二次方程的有.12.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为.13.方程(2x﹣5)2=9的解是.14.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为.15.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的取值范围是.16.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.17.已知一元二次方程2x2+bx+c=0的两个实数根为﹣1,3,则b+c=.18.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,2则称这样的方程为“半根方程”.例如方程x﹣6x+8=0的根为的x1=2,x2=4,则x122=x2,则称方程x﹣6x+8=0为“半根方程”.若方程ax+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为.三.解答题(共8小题,满分58分)19.解下列一元二次方程:(1)x2﹣2x﹣1=0;(2)3x(2x+3)=4x+6.20.已知△ABC的三边长为a、b、c且关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等的实数根,请判断△ABC的形状并加以说明.21.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.求进馆人次的月平均增长率.22.一个两位数的个位数字与十位数字的和为9,并且个位数字与十位数字的平方和为45,求这个两位数.23.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.22(2)设出x1、x2是方程的两根,且x1+x2=12,求m的值.24.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?25.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?
立即下载