如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
朝阳12.如图,在平面直角坐标系xOy中,直线AB与x、y轴分别交于点A、B,且A(-2,0),B(0,1),在直线AB上截取BB1=AB,过点B1分别作x、y轴的垂线,垂足分别为点A1、C1,得到矩形OA1B1C1;在直线AB上截取B1B2=BB1,过点B2分别作x、y轴的垂线,垂足分别为点A2、C2,得到矩形OA2B2C2;在直线AB上截取B2B3=B1B2,过点B3分别作x、y轴的垂线,垂足分别为点A3、C3,得到矩形OA3B3C3;……则第3个矩形OA3B3C3的面积是;第n个矩形OAnBnCn的面积是(用含n的式子表示,n是正整数).西城12.如图,在平面直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,∠OAB=90°.⊙P1是△OAB的内切圆,且P1的坐标为(3,1).OA的长为,OB的长为;点C在OA的延长线上,CD∥AB交x轴于点D.将⊙P1沿水平方向向右平移2个单位得到⊙P2,将⊙P2沿水平方向向右平移2个单位得到⊙P3,按照同样的方法继续操作,依次得到⊙P4,……⊙Pn.若⊙P1,⊙P2,……⊙Pn均在△OCD的内部,且⊙Pn恰好与CD相切,则此时OD的长为.(用含n的式子表示)昌平12.如图,从原点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第5个半圆的面积为,第n个半圆的面积为.门头沟12.如图,将边长为2的正方形纸片ABCD折叠,使点B落在ABCDEFMNCD上,落点记为E(不与点C,D重合),点A落在点F处,折痕MN交AD于点M,交BC于点N.若,则BN的长是,的值等于;若(,且为整数),则的值等于(用含的式子表示).12如图1,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.图1A1BCDAFEBCDAFEBCDAFEB1C1F1D1E1A1B1C1F1D1图3B1A1A2A3OS1S3B3B4B2丰台12.如图,在△OA1B1中,∠OA1B1=90°,OA1=A1B1=1.以为圆心,为半径作扇形OA1B2,eq\o(\s\up5(⌒),\s\do2(A1B2))与相交于点,设△OA1B1与扇形OA1B2之间的阴影部分的面积为;然后过点B2作B2A2⊥OA1于点A2,又以为圆心,为半径作扇S2形OA2B3,eq\o(\s\up5(⌒),\s\do2(A2B3))与相交于点,设△OA2B2与扇形OA2B3之间的阴影部分面积为;按此规律继续操作,设△OAnBn与扇形OAnBn+1之间的阴影部分面积为.则S1=___________;Sn=.ACFO(B)EP大兴12.如图,已知是的直径,把为的直角三角板的一条直角边放在直线上,斜边与交于点,点与点重合.将三角板沿方向平移,使得点与点重合为止.设,则的取值范围是怀柔12.如12题图1,是由方向线一组同心、等距圆组成的点的位置记录图。包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、……n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为(,).如12题图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为(,),点A2013的位置为(,),点A16n+2(n为正整数)的位置为(,),12题图112题图2