中考数学试题经典大题.pdf
上传人:金启****富来 上传时间:2024-09-10 格式:PDF 页数:8 大小:2.4MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

中考数学试题经典大题.pdf

中考数学试题经典大题.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

.中考数学经典大题1.已知在△ABC中,∠ABC=90°,AB=6,BC=8.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ△ACB;(2)当△PQB是等腰三角形时,求AP的长.2.如图,对称轴为的抛物线与轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与轴的交点.①若点P是抛物线上第三象限的点,是否存在点P,使得S=4S,若存在,求点P的坐△POC△BOC标;若不存在,请说明理由.②设点Q是线段AC上的动点,作QD轴交抛物线于点D,求线段QD长度的最大值.③若M是轴上方抛物线上的点,过点M作MN轴于点N,若△MNO与△OBC相似,求M点的坐标.3.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CFAD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径.1/8.4.如图,已知函数与坐标轴分别交于A、D、B三点,顶点为C.(1)求△BAD的面积;(2)点P是抛物线上一动点,是否存在点P,使S=S?若存在,求出点P的坐标;若△ABP△ABC不存在,请说明理由;(3)在轴上是否存在一点Q,使得△DOQ与△ABC相似,如果存在,求出点P的坐标,如果不存在,请说明理由.5.如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的接四边形,点A、B在轴上,△MBC是边长为2的等边三角形。过点M作直线与轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A、B、E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.6.如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若,求的值.2/8.7.已知抛物线经过点A(3,2),B(0,1)和点C(-1,).(1)求抛物线的解析式;(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若S=4S,求点F的坐标;△PFN△PFM(3)在(2)的条件下,在轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.8.如图,PB切⊙O于B点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.(1)直线PA是否为⊙O的切线,并证明你的结论;(2)若BC=16,⊙O的半径的长为17,求的值;(3)若OD:DP=1:3,且OA=3,则图中阴影部分的面积为?9.将抛物线:平移后的抛物线与轴交于、两点(点在点的左边)与轴负C1C2ABAB半轴交于C点,已知A(-1,0),.(1)求抛物线的解析式;C2(2)若点P是抛物线C上的一点,连接PB,PC.求S=S时点P的坐标;2△BPC△CAB(3)为抛物线的顶点,是线段上一动点,连接,点,到直线的距离记为DC2QBDCQBDCQ,,试求出的最大值,并求出此时点坐标.d1d2d1+d2Q3/8.10.如图1,AB为⊙O的直径,TA为⊙O的切线,BT交⊙O于点D,TO交⊙O于点C、E.(1)若BD=TD,求证:AB=AT;(2)在(1)的条件下,求的值;(3)如图2,若,且⊙O的半径r=,则图中阴影部分的面积为?11.如图,过A(1,0),B(3,0)作轴的垂线,分别交直线于C、D两点.抛物线经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若点P为抛物线上的一点,连接PD,PC.求S=S时点P