复件 中考大题练习1.doc
上传人:sy****28 上传时间:2024-09-14 格式:DOC 页数:2 大小:133KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

复件 中考大题练习1.doc

复件中考大题练习1.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中考大题练习1已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C。(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的()倍.若存在,请直接写出点P的坐标;若不存在,请说明理由.(2012沈阳)答案解:(1)如答图①,∵A(-2,0)B(0,2)∴OA=OB=2∴AB2=OA2+OB2=22+22=8∴AB=2∵OC=AB∴OC=2,即C(0,2)又∵抛物线y=-x2+mx+n的图象经过A、C两点则可得解得:∴抛物线的表达式为y=-x2-x+2(2)∵OA=OB∠AOB=90°∴∠BAO=∠ABO=45°又∵∠BEO=∠BAO+∠AOE=45°+∠AOE∠BEO=∠OEF+∠BEF=45°+∠BEF∴∠BEF=∠AOE(3)当△EOF为等腰三角形时,分三种情况讨论①当OE=OF时,∠OFE=∠OEF=45°在△EOF中,∠EOF=180°-∠OEF-∠OFE=180°-45°-45°=90°又∵∠AOB=90°则此时点E与点A重合,不符合题意,此种情况不成立.②如答图②,当FE=FO时,∠EOF=∠OEF=45°在△EOF中,∠EFO=180°-∠OEF-∠EOF=180°-45°-45°=90°∴∠AOF+∠EFO=90°+90°=180°∴EF∥AO∴∠BEF=∠BAO=45°又∵由(2)可知,∠ABO=45°∴∠BEF=∠ABO∴BF=EF∴EF=BF=OF=OB=×2=1∴E(-1,1)③如答图③,当EO=EF时,过点E作EH⊥y轴于点H在△AOE和△BEF中,∠EAO=∠FBE,EO=EF,∠AOE=∠BEF∴△AOE≌△BEF∴BE=AO=2∵EH⊥OB∴∠EHB=90°∴∠AOB=∠EHB∴EH∥AO∴∠BEH=∠BAO=45°在Rt△BEH中,∵∠BEH=∠ABO=45°∴EH=BH=BEcos45°=2×=∴OH=OB-BH=2-2∴E(-,2-)综上所述,当△EOF为等腰三角形时,所求E点坐标为E(-1,1)或E(-,2-2)(4)P(0,2)或P(-1,2)