2024年圆的面积教学反思简短(优秀9篇).docx
上传人:小多****多小 上传时间:2024-09-10 格式:DOCX 页数:22 大小:47KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2024年圆的面积教学反思简短(优秀9篇).docx

2024年圆的面积教学反思简短(优秀9篇).docx

预览

免费试读已结束,剩余 12 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年圆的面积教学反思简短(优秀9篇)总结是一种概括性的写作方式,它帮助人们系统化地整理和理解所学和所思。怎样写好一篇总结,是许多人在写总结过程中遇到的难题。推荐给大家几篇总结范文,希望能对大家的写作有所帮助。圆的面积教学反思简短篇一“圆的面积”在学生掌握面积的含义和矩形、正方形等平面图形的面积计算方法,理解圆并计算圆的周长的基础上进行教学。在本课程的教学设计中,我特别注重遵循学生的认知规律,关注学生从生活经验和已有知识中获取知识、学习数学和理解数学的思维过程。本节的教学主要突出以下几点:首先,在学习新知识之前,引入新旧并渗透“变换”的思想,引导学生回忆以前探索矩形、平行四边形、三角形和梯形面积公式的推导方法,引导学生发现“转化”是探索数学知识的新途径,是解决数学问题的好方法,为探索圆的面积计算方法奠定了基础。其次,大胆猜测,激发探索。在强调圆面积的含义后,我让学生猜测圆面积可能与什么有关。当学生猜测圆的面积可能与圆的半径有关时,设计实验验证:画一个以正方形边长为半径的圆,用计算正方形的方法计算圆的面积,探索圆的面积大约是正方形的几倍。这一信息在旧教科书中不可用。学生的好奇心和求知欲得到充分调动,这些正是他们进一步开展探究活动的“根植”。第三,手工切割和拼写,体验“学生猜测后,将歌曲变为直线,取出两张同样大小的准备好的光盘,将其中一张分成几个部分,然后拼成平行四边形或矩形。学生手工切割拼图后,选择2~3组进行观察比较,发现如果一个圆被均匀地分成更多的部分,那么图形越接近图形的平行四边形或矩形。然后比较圆与图形之间的关系。比较切割后,拼图形状与原始图形、与圆相关的部分和组合图形用彩笔进行标记,形成清晰的对比,为以后推导面积计算公式打下了充分的基础。四、演示操作,感受知识的构成。通过观察、比较和分析,找出圆的面积、周长和半径与组装的近似矩形的面积、长度和宽度之间的关系,并让学生推导出圆的面积计算公式。这样,从帮助到投入,从现象到本质,学生将始终参与如何将圆转化为矩形和平行四边形的探索活动,从而感受知识的构成。v.分层实践与经验应用价值。结合教材中的实例,设计了三个层次的基本实践、改进实践和综合实践,从三个不同层次测试学生的学习情况。首先,基础练习巩固计算公式的应用,强调标准化的写作格式。第二,改进练习,收集身边的实际数据,使本课所学数据与生活联系起来,灵活运用。第三,综合练习不仅要把以前学过的知识(给定圆的周长,先求半径,再求圆的面积)联系起来,还要锻炼学生的综合应用能力。在每个练习题的设置上,他们有不同的目的,并注意每个练习的指导重点。但是,该课程的新课时间太长,实践不足,需要在今后的教学中加以注意。圆的面积教学反思简短篇二圆是小学阶段最终的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是分析问题的方法,都有所变化,是学习上的一次飞跃。经过对圆的分析,使学生认识到分析曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,并且从空间观念来说,进入了一个新的领域。所以,经过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自我的推导想法,师生共同倾听并确定学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践本事和创新意识。在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部