如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
自考.04概率论与数理统计试卷及解析资料仅供参考04月真题讲解一、前言学员朋友们,你们好!现在,对《全国4月高等教育自学考试概率论与数理统计(经管类)试题》进行必要的分析,并详细解答,供学员朋友们学习和应试参考.三点建议:一是在听取本次串讲前,请对课本内容进行一次较全面的复习,以便取得最佳的听课效果;二是在听取本次串讲前,务必将本套试题独立地做一遍,以便了解试题考察的知识点,以及个人对课程全部内容的掌握情况,有重点的听取本次串讲;三是,在听取串讲的过程中,对重点、难点的题目,应该重复多听几遍,探求解题规律,提高解题能力.一点说明:本次串讲所使用的课本是8月第一版.二、考点分析1.总体印象对本套试题的总体印象是:内容比较常规,个别题目略偏.内容比较常规:①概率分数偏高,共76分;统计分数只占24分,与以往考题的分数分布情况对比,总的趋势不变,各部分分数稍有变化;②课本中各章内容都有涉及;③几乎每道题都能够在课本上找到出处.个别题目略偏:与历次试题比较,本套试题有个别题目内容略偏,比如21题、25题等.难度分析:本套试题基本保持了历年试题的难度.如果粗略的把题目难度划分为易、中、难三个等级,本套试题容易的题目约占24分,中等题目约占60分,稍偏难题目约占16分,包括计算量比较大题目.当然,以上观点只是相对于历年试题而言,是在与历年试题对比中产生的看法.如果只看本套试题,应该说是一套不错的试题,只是难度没有降低.2.考点分布按照以往的分类方法:事件与概率约18分,一维随机变量(包括数字特征)约38分,二维随机变量(包括数字特征)约18分,大数定律2分,统计量及其分布4分,参数估计10分,假设检验8分,回归分析2分.考点分布的柱状图如下三、试题详解一、单项选择题(本大题共10小题,每小题2分,共20分)1.甲,乙两人向同一目标射击,A表示“甲命中目标”,B表示“乙命中目标”,C表示“命中目标”,则C=()A.AB.BC.ABD.A∪B[]【答案】D【解析】“命中目标”=“甲命中目标”或“乙命中目标”或“甲、乙同时命中目标”,因此可表示为“A∪B”,故选择D.【提示】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B至少有一个发生”为事件A与B的和事件,也称为A与B的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发生”为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;②若,则AB=A.(3)事件的差:称事件“A发生而事件B不发生”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2.设A,B是随机事件,,P(AB)=0.2,则P(A-B)=()A.0.1B.0.2C.0.3D.0.4[]【答案】A【解析】,,故选择A.【提示】见1题【提示】(3).3.设随机变量X的分布函数为F(X)则()A.F(b-0)-F(a-0)B.F(b-0)-F(a)C.F(b)-F(a-0)D.F(b)-F(a)[]【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提示】.【提示】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1<x2),都有;③F(x)是单调非减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),能够求出下列三个常见事件的概率:①;②,其中a<b;③.4.设二维随机变量(X,Y)的分布律为0120100.10.20.40.30则()A.0B.0.1C.0.2D.0.3[]【答案】D【解析】因为事件,因此,=0+0.1+0.2=0.3故选择D【提示】1.本题考察二维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5.设二维随机变量(X,Y)的概率密度为,则()A.0.25B.0.5C.0.75D.1[]【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,因此故选择A.【提示】1.二维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因而在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平面区