中考数学总复习--方程组与不等式组-不等式组及其应用试题1.doc
上传人:王子****青蛙 上传时间:2024-09-09 格式:DOC 页数:6 大小:64KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

中考数学总复习--方程组与不等式组-不等式组及其应用试题1.doc

中考数学总复习--方程组与不等式组-不等式组及其应用试题1.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第9讲不等式(组)及其应用一、选择题1.(2016·常州)若x>y,则下列不等式中不一定成立的是(D)A.x+1>y+1B.2x>2yC.eq\f(x,2)>eq\f(y,2)D.x2>y2(导学号02052132)2.(2016·六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是(D)(导学号02052133)3.(2016·山西百校联考二)不等式组eq\b\lc\{(\a\vs4\al\co1(-x+1<3,\f(3x+3,2)>1))的整数解的个数是(A)A.无数个B.6C.5D.4(导学号02052134)4.(2016·长沙)不等式组eq\b\lc\{(\a\vs4\al\co1(2x-1≥5,8-4x<0))的解集在数轴上表示为(C)(导学号02052135)5.(2016·绵阳)在关于x,y的方程组eq\b\lc\{(\a\vs4\al\co1(2x+y=m+7,x+2y=8-m))中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为(C)(导学号02052136)6.(2016·山西百校联考三)某种记事本零售价每本6元,凡一次性购买两本以上就给予优惠,优惠方式有两种.第一种:“两本按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本(C)A.5本B.6本C.7本D.8本7.(2016·聊城)不等式组eq\b\lc\{(\a\vs4\al\co1(x+5<5x+1,x-m>1))的解集是x>1,则m的取值范围是(D)A.m≥1B.m≤1C.m≥0D.m≤0(导学号02052137)8.(2016·遵义)三个连续正整数的和小于39,这样的正整数中,最大一组的和是(B)A.39B.36C.35D.34(导学号02052138)解析:设三个连续正整数分别为x-1,x,x+1.由题意(x-1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续正整数的和最大,三个连续正整数的和为:11+12+13=36.故选B二、填空题9.(2016·陕西)不等式-eq\f(1,2)x+3<0的解集是__x>6__.(导学号02052139)10.(2016·广东)不等式组eq\b\lc\{(\a\vs4\al\co1(x-1≤2-2x,\f(2x,3)>\f(x-1,2)))的解集是__-3<x≤1__.(导学号02052140)11.(2016·烟台)已知不等式组eq\b\lc\{(\a\vs4\al\co1(x≥-a-1①,-x≥-b②)),在同一条数轴上表示不等式①,②的解集如图所示,则b-a的值为__eq\f(1,3)__.(导学号02052141)12.(2016·山西适应性训练)使不等式x-2≥-3与2x+2<5同时成立的x的整数值是__-1或0或1__.13.今年三月份甲、乙两个工程队承包了面积1800m2的区域绿化,已知甲队每天能完成100m2,需绿化费用为0.4万元;乙队每天能完成50m2,需绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作__10__天.(导学号02052142)三、解答题14.(2016·黄冈)解不等式:eq\f(x+1,2)≥3(x-1)-4.(导学号02052143)解:去分母得,x+1≥6(x-1)-8,去括号得,x+1≥6x-6-8,移项得,x-6x≥-6-8-1,合并同类项得,-5x≥-15,系数化为1,得x≤315.(2016·深圳)解不等式组:eq\b\lc\{(\a\vs4\al\co1(5x-1<3(x+1),\f(2x-1,3)-1≤\f(5x+1,2))).(导学号02052144)解:令eq\b\lc\{(\a\vs4\al\co1(5x-1<3(x+1)①,\f(2x-1,3)-1≤\f(5x+1,2)②)),解①得x<2,解②得x≥-1,则不等式组的解集是-1≤x<216.(2016·大庆)关于x的两个不等式①eq\f(3x+a,2)<1与②1-3x>0.(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.(导学号02052145)解:(1)解①得:x<eq\f(2-a,3),解②得:x<eq\f(1,3),由两个不等式的解集相同,得到eq\f(2-a,3)=eq\f(1,3),解得:a=1;(2)由不等式①的解都是②的解,得到eq\f(2-
立即下载