如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
.书后部分习题解答P21页1aa2an3.(3)lim(a1,b1)n1bb2bna(1qn)知识点:1)等比级数求和aaqaq2aqn1(q1)(共n项)1q2)用P14例4的结论:当q1时,limqn0n1an11aa2an1a1b解:limlimn1bb2bnn1bn11a1b5.(1)判断下列数列是否收敛,若收敛,则求出极限:1a设a为正常数,x0,x(x)0n12nxn1a1a证:由题意,x0,x(x)2xa(数列有下界)nn12nx2nxnn1aax2又xx(x)xn0(因xa)(数列单调减少)n1n2nxn2xn1nn1a1a由单调有界定理,此数列收敛;记limxb,对x(x)两边取极限,得b(b),nn1nn2x2bn解得ba(负的舍去),故此数列的极限为a.xn1(n1)xn[1(x1)]n1(n1)xnP35页4.(8)极限limlimx1(x1)2x1(x1)21C1(x1)C2(x1)2(x1)n1(n1)xnlimn1n1x1(x1)2n(n1)C2n120xn1(n1)xn(若以后学了洛必达法则(型未定型),则lim0x1(x1)2(n1))xn(n1)(n1)nxn1n(n1)limlim)x12(x1)x122书后部分习题解答2P36页18.已知当x0时,(1ax2)31~cosx1,求常数a...知识点:1)等价无穷小的概念;2)熟记常用的等价无穷小,求极限时可用等价无穷小的替换定理。11ax2(1ax2)3132a3解:由题意:limlim1得acosx1x232x0x021(1ax2)311ax212a或limlim1x0cosx1x0x2213[(1ax2)3(1ax2)31]2(根式有理化)P42页3(4)11f(x)sin关于间断点:xxx0为第二类间断点11说明:limsin不存在(在x0的过程中,函数值不稳定,不趋向与)x0xx12x4x0(0,)P43页7(1)证明方程在2内必有一实根。知识点:闭区间(一定要闭)上连续函数的根的存在定理1f(x)2x4xf(x)[0,]证明:设,易知,在2上连续;(注:设函数,闭区间)1f(0)10f()220,2,1(0,)f()0故由根的存在定理,至少在2内存在一点,使,12x4x0(0,)即方程在2内必有一实根.P61页3.设f(x)存在,求:0f(x)f(xx)f(xh)f(xh)(1)lim00(2)lim00x0xh0hf(x3t)f(x)(3)lim00t0tf(xx)f(x)分析:因f(x)存在,则极限lim00的值为f(x)。00x0x把(1)(2)(3)化为相应可用极限的形式f(x)f(xx)f(x(x))f(x)解:(1)lim00lim00f(x)0x0xx0(x)..f(xh)f(xh)f(xh)f(x)f(xh)f(x)(2)lim00lim0000h0hh0hf(xh)f(x)f(x(h))f(x)0000limh0h(h)(1)f(x)f(x)2f(x)000f(x3t)f(x)f(x3t)f(x)(3)lim00lim0033f(x)0t0tt03tx,x08.用导数的定义求f(x)在x0处的导数.(可参看P51例1-2)ln(1x),x0f(xx)f(x)知识点:1)导数在一点x处的定义:f(x)lim00;00x0x2)点x处的左右导数的定义与记号:0f(xx)f(x)左导数f(x)lim000x0xf(xx)f(x)右导数f(x)lim000x0x3)分段函数在分界点(具体的点)处的导数必须用导数的定义或左右导数的定义做。解:因f(0)0(先