(完整word版)追击相遇问题专题讲解.doc
上传人:俊凤****bb 上传时间:2024-09-11 格式:DOC 页数:8 大小:280KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)追击相遇问题专题讲解.doc

(完整word版)追击相遇问题专题讲解.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

追击与相遇专题讲解学员姓名辅导科目物理就读年级高一辅导教师唐老师课型新授课教学目标1.相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。2.解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系:(2)位移关系:(3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。重点难点考点重点:对题上的时间进行分析难点:位移的相差是多少课时1课时教学过程1.速度小者追速度大者:类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀速追匀减速匀加速追匀减速2.速度大者追速度小者:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀速追匀加速匀减速追匀加速说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.考点1追击问题1、追及问题中两者速度大小与两者距离变化的关系。甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离(填最大或最小)。2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。判断方法是:假定速度相等,从位置关系判断。①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。解决问题时要注意二者是否同时出发,是否从同一地点出发。追击问题分析方法:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。⑶仔细审题,充分挖掘题目中的隐含条件,同时注意图象的应用。物体A、B同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B以2m/s2的加速度从静止开始做匀加速直线运动,求A、B再次相遇前两物体间的最大距离.【解析一】物理分析法A做υA=10m/s的匀速直线运动,B做初速度为零、加速度a=2m/s2的匀加速直线运动.根据题意,开始一小段时间内,A的速度大于B的速度,它们间的距离逐渐变大,当B的速度加速到大于A的速度后,它们间的距离又逐渐变小;A、B间距离有最大值的临界条件是υA=υB.①设两物体经历时间t相距最远,则υA=at②把已知数据代入①②两式联立得t=5s在时间t内,A、B两物体前进的距离分别为eqsA=υAt=10×5m=50meqsB=\f(1,2)at2=\f(1,2)×2×52m=25mA、B再次相遇前两物体间的最大距离为eqΔsm=sA-sB=50m-25m=25m【解析二】相对运动法因为本题求解的是A、B间的最大距离,所以可利用相对运动求解.选B为参考系,则A相对B的初速度、末速度、加速度分别是υ0=10m/s、υt=υA-υB=0、a=-2m/s2.根据υt2-υ0=2as.有eq0-102=2×(-2)×sAB解得A、B间的最大距离为sAB=25m.【解析三】极值法物体A、B的位移随时间变化规律分别是sA=10t,eqsB=\f(1,2)at2=\f(1,2)×2×t2=t5.则A、B间的距离eqΔs=10t-t2,可见,Δs有最大值,且最大值为eqΔsm=\f(4×(-1)×0-102,4×(-1))m=25m【解析四】图象法根据题意作出A、B两物体的υ-t图象,如图1-5