高二数学教学计划精选.docx
上传人:lj****88 上传时间:2024-09-10 格式:DOCX 页数:56 大小:46KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高二数学教学计划精选.docx

高二数学教学计划精选.docx

预览

免费试读已结束,剩余 46 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高二数学教学计划高二数学教学计划(15篇)人生天地之间,若白驹过隙,忽然而已,我们又将接触新的知识,学习新的技能,积累新的经验,我们要好好计划今后的学习,制定一份计划了。相信大家又在为写计划犯愁了吧?以下是小编帮大家整理的高二数学教学计划,欢迎阅读与收藏。高二数学教学计划1一、指导思想:全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。二、教学具体目标1、期中考前完成必修3、选修2-3第一章2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。三、教材特点:我们所使用的教材是人教版《普通高中课程标准实验教科书》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,强调了问题提出,抽象概括,分析理解,思考交流等研究性学习过程。具体特点如下:1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。2、“问题性”:专门安排了“课题学习”和“探究活动”,培养问题意识,孕育创新精神。3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。4、“时代性”与“应用性”:教材中有“信息技术建议”和“信息技术应用”,以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。5、“人文应用价值性”:编写了一些阅读材料,开拓学生视野,从数学史的发展足迹中获取营养和动力,全面感受数学的科学价值、应用价值和文化价值。四、教法分析:1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的`思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。五、教学措施:1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法6、重视数学应用意识及应用能力的培养。六、教学进度安排(略)高二数学教学计划2教学目标:1.知识与技能目标:(1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;(2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”的思维方法,并注意理解推导“割圆术”的操作步骤。2.过程与方法目标:(1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻辑思维能力;(2)学会借助实例分析,探究数学问题。3.情感与价值目标:(1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;(2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。教学重点与难点:重点:了解“更相减损之术”及“割圆术”的算法。难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。教学方法:通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。教学过程:教学环节教学内容师生互动设计意图创设情境引入新课引导学生回顾人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法