如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
高二数学教学计划开头(精选20篇)通过制定计划,我们可以更好地规划工作和学习的内容和进度,避免拖延和摸鱼。在制定计划之前,我们应该梳理现有的资源和情况,以便更好地规划。正确评估和反思计划的执行过程是改进的关键。高二数学教学计划开头篇一11电子(1),现共50人,均为男生,在去年的一年中的学习表现中,有些同学在课堂上也能积极思考,积极发言,课后也能主动地完成课外的知识积累,有两位同学参加县里数学竞赛都荣获二等奖。但还有好多的同学学习目标仍不明确,在学校生活就是混日子,上课不认真听课,作业不独立完成,课后再也没时间放在学习上,因此,这一些同学的成绩就可想而知了。二、教材分析。本学期根据教学大纲的编排,主要内容包括第八章直线和圆的方程,第九章立体几何和第十章概率与统计初步。具体内容:第八章有坐标系中的基本公式,直线的方程,圆的方程,直线与圆的位置关系,本章内容主要就是用代数的知识阐述几何图形的问题。第九章的内容分空间中平面的基本性质,空间中的平行关系,空间中的垂直和角,多面体和旋转体。教材首先让学生从直观上认识空间几何体和轨迹,然后给出了平面的三条基本性质,从而把平面上的平行关系推广到空间。学习立体几何除了培养学生的空间想象能力外,还培养学生逻辑思维能力。第十章有计数的两个原理,概率初步,统计初步及随机抽样的三种基本方法。本章教学中要激发并培养学生的学习兴趣地,增强学生的社会实践能力,培养学生解决实际问题的能力。三、教学目标。解析几何:掌握平面直角坐标系内两点之间的距离公式和中点公式;理解直线的方程和圆的方程的含义,方程求两曲线的交点;理解直线的倾斜角和斜率,会根据已知条件,求直线的斜率和倾斜角;掌握直线的点斜式方程和斜截式方程;理解直线在y轴上的截距理解直线与二元一次方程的关系,掌握直线的一般式言行中,了角直线的方向向量和法向量;理解两直线平等行与垂直的条件,会求点到直线的距离;掌握圆的标准方程和一般方程,理解直线与圆的位置关系;能利用直线和圆的方程解决简单的问题。立体几何:能正确地画出有关被单图形的示意图,能由空间图形的示意图想象出空间图形;会用斜二侧画法画水平放置的正三角形、正方形、正六边形等平面图形的直观图和正方体、长方体等立体图形的直观图;理解空间点、直线、平面之间的各种位置关系;掌握平面的基本性质,空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定;理解空间中的角;掌握简单多面体的有关概念、结构特征与性质;掌握直棱柱、正棱锥、圆柱和圆锥的侧面积及表面积计算公式。概率与统计初步:掌握分类计数和分步计数原理,会用这两个原理解决一些简单问题;了解随机现象、随机试验的概念;理解古典概率的性质,会用古典概率解决一些简单的实际问题。理解概率的统计定义;结合具体的实际问题情景,了解随机抽样的必要性和重要性。学会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法;会计算样本方差和标准差;能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;会用样本的频率分布估计总体分布。四、教学措施。高二数学教学计划开头篇二刚开学注重初高中知识的衔接,放慢教学节奏,下面是高二数学教学计划,为大家提供参考。一.教材分析。高中经过文理科的分班后,学习的难度又有了新的挑战,在必修阶段学习习近平面解析几何初步的基础上,将学习圆锥曲线与二次方程、空间向量的引入,将平面向量及其运算推广到解决三维空间中的位置关系与度量;微积分的创立是数学发展中的里程碑,导数和定积分都是微积分的核心概念;数系的'扩充,引入复数的概念;计数的两个基本原理;必修模块中学习了最基本的概率性质,古典概型和几何概型,在选修模块中,将学习某些离散型随机变量及其分布等知识,难度对于高一的明显提高很多,考试的成绩也容易让学生感到失落,压力大。二.学生分析。由于高二数学的难度在高一的基础上继续加大,这就会导致学生兴趣不足、积极性不强,使学习陷入被动。且很多学生学不得法,眼高手低,不重视课本基础知识的落实都是导致学生成绩不理想的原因。高二数学教学计划开头篇三本节课教学内容是普通高中课程标准实验教科书·数学必修3(苏教版)中“3.4互斥事件”第1课时。教材既介绍计算概率的两种简单模型——古典概型、几何概型,开始学习求解复杂事件的概率。对复杂事件的概率的计算,就需要分析复杂事件与基本事件间的关系,以及复杂事件发生的概率与基本事件发生的概率间的关系,为此,教材引入互斥事件、对立事件概念,从中渗透化繁为简的指导思想。本节内容在高考考试说明要求为a级。针对本校提倡的“先学——后批——自纠——点评——反思”教学流程,学生在充分预习的情况下对教学案中的“自学质疑”板块已有