如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
三角形内角和教案精品多篇【编辑】三角形内角和教案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。角形内角和教学设计篇一教学内容:教材例6、“做一做”及教材练习十六第1~3题。教学目标:1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。3.培养学生动手动脑及分析推理能力。重点难点:掌握三角形的内角和是180°。教学准备:三角形卡片、量角器、直尺。导学过程一、复习1、什么是平角?平角是多少度?2、计算角的度数。3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。2、揭题:课件演示什么是三角形的内角和。3、猜想:三角形的内角和是多少度。4、验证:(1)初证:用一副三角板说明直角三角形的内角和是180°。(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀10分)5、结论:修改板书,把“?”去掉,写“是”。6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是110,第三个内角是().(2)一个直角三角形的一个锐角是50,则另一个锐角是()。(3)等边三角形的3个内角都是()。(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。2、判断(1)一个三角形中最多有两个直角。()(2)锐角三角形任意两个内角的和大于90。()(3)有一个角是60的等腰三角形不一定是等边三角形。()(4)三角形任意两个内角的和都大于第三个内角。()(5)直角三角形中的两个锐角的和等于90。()四、拓展探究根据所学的知识,你能想办法求出四边形、五边形的内角和吗?1、小组讨论。2、汇报结果。3、课件提示帮助理解。五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。六、谈谈自己本节课的收获。教学反思今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。如何验证内角和是180°,是我一直比较纠结的。环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角