如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
模拟方法—概率的应用1.会用模拟方法估计概率,近似计算不规则图形的面积,求π的近似值;2.通过解决具体问题的实例感受,体会模拟方法的基本思想,学会依据随机试验的试验结果设计合理的模拟方法,通过模拟试验加深对随机事件频率的随机性和概率的稳定性的认识以及用频率去估计概率的方法;3.通过模拟方法的设计体验数学的重要性和信息技术带给数学的帮助;通过动手模拟,动脑思考,体会做数学题的乐趣,提高学习兴趣;通过合作试验,培养学生愿意合作与交流的团队精神,情感态度与价值观增强.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯.重点与难点:几何概型的概念、公式及应用.1、知识回顾:我们已经学习了两种计算事件发生的概率的方法:(1)通过试验方法得到事件发生的频率,来估计概率.(一种近似估计,需通过大量重复试验)(2)用古典概型的公式来计算概率.(仅适用于基本事件为有限个的情况)在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.常常会遇到试验的所有可能结果(即基本事件)为无穷多的情况,且这无穷多个基本事件保持这古典概型的“等可能性”.这时用大量试验的方法很难获得一个符合要求的概率,也不能用古典概型的方法求解.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.那怎么办呢?请观察下列问题并思考如何确定其概率?问题1:如图所示在边长为a的正方形内有一个不规则的阴影部分,那么怎样求这阴影部分的面积呢?问题1:射箭比赛的箭靶涂有五个彩色得分环,从外向内为黑色、白色、蓝色、红色,靶心为黄色,靶面直径为122cm,靶心直径为12.2cm,运动员在70m外射击.假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?问题2:取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?大家有疑问的,可以询问和交流问题3:有一杯1升的水,其中漂浮有1个微生物,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个微生物的概率.(1)一次试验的所有可能出现的结果有无限多个;(2)每个结果发生的可能性大小相等.将古典概型中的基本事件的有限性推广到无限性,而保留等可能性,就得到几何概型.试验1:取一个矩形,在面积为四分之一的部分画上阴影,随机地向矩形中撒一把芝麻(以数100粒为例),假设每一粒芝麻落在正方形内的每一个位置的可能性大小相等.统计落在阴影内的芝麻数与落在矩形内的总芝麻数,观察它们有怎样的比例关系?落在区域A内的芝麻数用模拟方法估计圆周率的值≈例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.例2.在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.结论例3、小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐.(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大?(1)设计一个模拟方案(2)理论上的精确值:7/8=0.875如果小明家的晚报在下午5:45~6:45之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐.你认为晚报在晚餐开始之前被送到可能性是变大了还是变小了呢?有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.结论:1.几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比例,而与事件的位置及形状无关;2.几何概型的两个特点:基本事件是无限的;基本事件是等可能的;3.几何概型概率的计算公式4.几何概型的应用:几何概型主要用来计算事件可“连续”发生的有关概率问题,如与速度、温度变化有关的物理问题,与长度、面积、体积有关的实际生产、生活问题.