高一物理 第三章 万有引力定律及其应用专题复习.doc
上传人:sy****28 上传时间:2024-09-10 格式:DOC 页数:5 大小:279KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

高一物理 第三章 万有引力定律及其应用专题复习.doc

高一物理第三章万有引力定律及其应用专题复习.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

学习热线:3335111或114查询求知教育第三章万有引力定律及其应用一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.证明:由基本关系式设恒星质量为M,行星质量为m(或行星质量为M,卫星质量为m),它们之间的间距为r,行星绕恒星(或卫星绕行星)的线速度、角速度、周期分别为v、ω、T.可以推得开普勒第三定律:(常量)二.万有引力定律1、(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F=G,其中,称为为有引力恒量。(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G的物理意义是:G在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.针对训练1:如图,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?2、讨论天体运动规律的基本思路把天体运动看成匀速圆周运动,所需向心力由万有引力提供:针对训练2:据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200km,运用周期127分钟。若还知道引力常量和月球平均半径,仅利用以上条件不能求出的是()A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月球运行的速度D.卫星绕月运行的加速度针对训练3:现有两颗绕地球匀速圆周运动的人造地球卫星A和B,它们的轨道半径分别为rA和rB。如果rA<rB,则A()A.卫星A的运动周期比卫星B的运动周期大B.卫星A的线速度比卫星B的线速度大C.卫星A的角速度比卫星B的角速度大D.卫星A的加速度比卫星B的加速度大针对训练4:图是“嫦娥一导奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是()A.发射“嫦娥一号”的速度必须达到第三宇宙速度B.在绕月圆轨道上,卫星周期与卫星质量有关C.卫星受月球的引力与它到月球中心距离的平方成反比D.在绕月轨道上,卫星受地球的引力大于受月球的引力三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力。如下图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G,g=GM/r2常用来计算星球表面重力加速度的大小。(1)同一纬度处,g随高度的增大而减小,即gh=GM/(r+h)2,比较得gh=()2g;(2)在赤道处,物体的万有引力分解为两个分力F向和m2g,它们刚好在一条直线上,有F=F向+m2g,所以m2g=F一F向=G-m2Rω自2,因地球目转角速度很小G»m2Rω自2,所以m2g=G;假设地球自转加快,即ω自变大,由m2g=G-m2Rω自2知物体的重力将变小,当G=m2Rω自2时,m2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=,比现在地球自转角速度要大得多.(3)在纬度不为零的地方,万有引力同样等于重力和向心力的合力,如上图所示。四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R,由mg=得g=,由此推得两个不同天体表面重力加速度的关系为针对训练5:火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为()A.0.2gB.0.4gC.2.5gD.5g五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G=mr,由此可得:M=;ρ===(R为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M.若知道行星的半径则可得行星的密度。针对训练6:登月火箭关闭发动机在离月球表面112km的空中沿圆形轨道运动,周期是120.5min,月球的半径是
立即下载