幂赋范下对数正态分布的收敛速度.pdf
上传人:sy****28 上传时间:2024-09-11 格式:PDF 页数:16 大小:158KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

幂赋范下对数正态分布的收敛速度.pdf

幂赋范下对数正态分布的收敛速度.pdf

预览

免费试读已结束,剩余 6 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Ratesofconvergenceofextremeforlognormaldistributionunderpowernormalization¤JianwenHuang,ShouquanChenSchoolofMathematicsandComputationalScience,ZunyiNormalCollege,ZunyiGuizhou,563002,ChinaSchoolofMathematicsandStatistics,SouthwestUniversity,Chongqing,400715,China(email:sqchen@swu.edu.cn)Abstract:Byapplyingthetheoryofp-maxstablelaws,westudytheratesofconvergenceofextremesforthelogarithmnormaldistributionunderpowernormalization.Weobtaintheexactuniformconvergencerateofthedistributionofmaximumtoitsextremevaluelimit.MathematicsSubjectClassi¯cation(2010):60F15,60G70Keywords:P-maxstablelaws;Logarithmnormaldistribution;Maximum;Uni-formconvergencerate.1IntroductionLetfXn;n¸1gbeasequenceofindependentandidenticallydistributed(iid)randomvariableswithcommondistributionfunction(df)F.Supposethatthereexistnormalizingconstantsan>0;bn2Randnon-degeneratedistributionfunctionG(x)suchthatnlimP(Mn·anx+bn)=limF(anx+bn)=G(x);(1.1)n!1n!1forallx2C(G),thesetofallcontinuitypointsofG;whereMn=maxfX1;X2;¢¢¢;Xng.ThenG(x)mustbelongtooneofthefollowingthreeclasses:(0;x<0;©®(x)=expf¡x¡®g;x¸0;(expf¡(¡x)®g;x<0;ª®(x)=1;x¸0;¤ProjectsupportedbyNSFS(grantNo.11071199,No.11171275).1¤(x)=expf¡e¡xg;x2R;where®isapositiveparameter,denoteF2Dl(G):CriteriaforF2Dl(G)andthechoiceofnormalizationconstantsanandbncanbefoundindeHaan(1970),Leadbetteretal.(1983)andResnick(1987).Inordertoobtainamoreaccurateapproximationofdistributionofmaximumbyitslimitingdf,Pancheva(1985)andWeinstein(1973)introducedanonlinearnormalizationcalledpowernormalization.AccordingtoMohanandRavi(1993),Pancheva(1985),FissaidtobelongtothedomainofattractionofadfHunderpowernormalization,denotedbyF2Dp(H)ifthereexistsomeconstants®n>0and¯n>0,suchthat¯¯1¯M¯¯n¯n¯n¯nlimP(¯¯sign(Mn)·x)=limF(®njxjsign(x))=H(x);(1.2)n!1®nn!1wheresign(x)=¡1;0or1asx<0;x=0;x>0:AdfHiscalledpower-maxstableorp-maxstableforshortbyMohanandRavi(1993)ifitsatis¯esthestabilityrelationn¯nH(®njxjsign(x))=H(x);x2Randn2N;forsomeconstan