如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第2节排列与组合1.排列与组合的概念2.排列数与组合数3.排列数、组合数的公式及性质[常用结论与微点提醒]2.排列、组合问题的求解方法与技巧诊断自测1.思考辨析(在括号内打“√”或“×”)2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12B.24C.64D.813.(一题多解)(选修2-3P28A17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18B.24C.30D.364.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________(用数字作答).5.(一题多解)某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为________(用数字作答).6.(2018·绍兴测试)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有________个;其中1,3,5三个数字互不相邻的六位数有________个.考点一排列问题规律方法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.【训练1】(1)某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有()A.30种B.600种C.720种D.840种(2)(2018·绍兴调测)将3个男同学和3个女同学排成一列,若男同学甲与另外两个男同学不相邻,则不同的排法种数为________(用数字作答).答案(1)C(2)288考点二组合问题规律方法组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.【训练2】(1)(2018·浙江名校三联)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是()A.72B.70C.66D.64(2)(2017·湖州质检)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种答案(1)D(2)D考点三排列、组合的综合应用规律方法(1)解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列.(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的差异.其次对于相同元素的“分配”问题,常用的方法是采用“隔板法”.【训练3】(1)(2018·稽阳联谊学校联考)将7人分成3组,要求每组至多3人,则不同的分组方法种数是________(用数字作答).(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案(1)175(2)6032OfficeTMGThankYou!