TLBO优化最小二乘支持向量机参数LSSVM.pdf
上传人:qw****27 上传时间:2024-09-12 格式:PDF 页数:10 大小:1.3MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

TLBO优化最小二乘支持向量机参数LSSVM.pdf

TLBO优化最小二乘支持向量机参数LSSVM.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

ChemometricsandIntelligentLaboratorySystems126(2013)11–20ContentslistsavailableatSciVerseScienceDirectChemometricsandIntelligentLaboratorySystemsjournalhomepage:www.elsevier.com/locate/chemolabModelNOxemissionsbyleastsquaressupportvectormachinewithtuningbasedonamelioratedteaching–learning-basedoptimizationGuoqiangLia,b,PeifengNiua,b,⁎,WeipingZhanga,b,YongchaoLiua,baKeyLabofIndustrialComputerControlEngineeringofHebeiProvince,YanshanUniversity,Qinhuangdao066004,ChinabNationalEngineeringResearchCenterforEquipmentandTechnologyofColdStripRolling,Qinhuangdao066004,ChinaarticleinfoabstractArticlehistory:Theteaching–learning-basedoptimization(TLBO)isanewefficientoptimizationalgorithm.ToimprovetheReceived14November2012solutionqualityandtoquickentheconvergencespeedandrunningtimeofTLBO,thispaperproposesanReceivedinrevisedform19April2013amelioratedTLBOcalledA-TLBOandtestitbyclassicalnumericalfunctionoptimizations.ComparedwithAccepted24April2013otherseveraloptimizationmethods,A-TLBOshowsbettersearchperformance.Inaddition,theA-TLBOisAvailableonline2May2013adoptedtoadjustthehyper-parametersofleastsquaressupportvectormachine(LS-SVM)inordertobuildNOxemissionsmodelofa330MWcoal-firedboilerandobtainawell-generalizedmodel.ExperimentalKeywords:Teaching–learning-basedoptimizationresultsshowthatthetunedLS-SVMmodelbyA-TLBOhaswellregressionprecisionandgeneralizationLeastsquaressupportvectormachineability.NOxemissions©2013ElsevierB.V.Allrightsreserved.Coal-firedboiler1.Introductiontoreplacetraditionalquadraticprogrammingmethod.ThesimplicityandinheritedadvantagesofSVMsuchasexcellentgeneralizationabili-Withtheincreaseofenergyconsumptionworldwideandim-tyandauniquesolutionpromotetheapplicationofLS-SVMinmanyprovedawarenessofenvironmentalprotection,boilercombustionpatternrecognitionandregressionproblems.optimizationproblemofpowerplantsattractstheattentionoftechni-TheregressionaccuracyandgeneralizationabilityofLS-SVMareex-calstaffsandmanagers.Theboilercombustionop