如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
二次根式教案二次根式教案模板汇编6篇在教学工作者实际的教学活动中,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。如何把教案做到重点突出呢?下面是小编为大家收集的二次根式教案6篇,希望能够帮助到大家。二次根式教案篇11.请同学们回忆(≥0,b≥0)是如何得到的?2.学生观察下面的例子,并计算:由学生总结上面两个式的关系得:类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:(≥0,b0)使学生回忆起二次根式乘法的运算方法的推导过程.类似地,请每个同学再举一个例子,请学生们思考为什么b的取值范围变小了?与学生一起写清解题过程,提醒他们被开方式一定要开尽.对比二次根式的乘法推导出除法的'运算方法增强学生的自信心,并从一开始就使他们参与到推导过程中来.对学生进一步强化被开方数的取值范围,以及分母不能为零.强化学生的解题格式一定要标准.教学过程设计问题与情境师生行为设计意图活动二自我检测活动三挑战逆向思维把反过来,就得到(≥0,b0)利用它就可以进行二次根式的化简.例2化简:(1)(2)(b≥0).解:(1)(2)练习2化简:(1)(2)活动四谈谈你的收获1.商的算术平方根的性质(注意公式成立的条件).2.会利用商的算术平方根的性质进行简单的二次根式的化简.找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.二次根式的乘法公式可以逆用,那除法公式可以逆用吗?找学生口述解题过程,教师将过程写在黑板上.请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.请学生自己谈收获,并总结本节课的主要内容.为了更快地发现学生的错误之处,以便纠正.此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.让学困生在自己做题时有一个参照.充分发挥组长的作用,尽可能在课堂上将问题解决.二次根式教案篇2【学习目标】1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。2、过程与方法:进一步体会分类讨论的数学思想。3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。【学习重难点】1、重点:准确理解二次根式的概念,并能进行简单的计算。2、难点:准确理解二次根式的双重非负性。【学习内容】课本第2—3页【学习流程】一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。二、课堂教学(一)合作学习阶段。教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的'问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。(二)集体讲授阶段。(15分钟左右)1.各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。2.教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。3.各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案篇3教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。教学重点最简二次根式的定义。教学难点一个二次根式化成最简二次根式的方法。教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1