【全国百强校】湖南师范大学附属中学2023-2024学年高三上学期月考卷(四)数学试题(解析版).doc
上传人:Ch****49 上传时间:2024-09-12 格式:DOC 页数:25 大小:3.7MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

【全国百强校】湖南师范大学附属中学2023-2024学年高三上学期月考卷(四)数学试题(解析版).doc

【全国百强校】湖南师范大学附属中学2023-2024学年高三上学期月考卷(四)数学试题(解析版).doc

预览

免费试读已结束,剩余 15 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖南师大附中2024届高三月考试卷(四)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,其中为虚数单位,则复数在复平面内对应的点的坐标为()A.B.C.D.【答案】C【解析】【分析】根据题意得,再分析求解即可.【详解】根据题意得:,所以复数在复平面内对应的点的坐标为:.故选:C.2.若随机事件A,B满足,,,则()A.B.C.D.【答案】D【解析】【分析】先由题意计算出,再根据条件概率求出即可.【详解】由题意知:,可得,故.故选:D.3.设是公比不为1的无穷等比数列,则“为递减数列”是“存在正整数,当时,”的()A.充分而不必要条件B.必要而不充分条件C充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分条件、必要条件的定义判断即可.【详解】解:因为是公比不为1的无穷等比数列,若为递减数列,当,则,所以,令,则,所以,所以时,当,则,所以恒成立,当,则,所以,当时,当,则,此时恒成立,对任意均有,故充分性成立;若存在正整数,当时,,当且,则恒成立,所以对任意均有,但是为递增数列,故必要性不成立,故“为递减数列”是“存在正整数,当时,”的充分不必要条件;故选:A4.设,,且,则()A.B.C.D.【答案】D【解析】【分析】根据给定等式,利用同角公式及和角的正弦公式化简变形,再利用正弦函数性质推理即得.【详解】由,得,于是,即,由,,得,则或,即或(不符合题意,舍去),所以.故选:D5.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】【分析】利用二项式定理,求指定项的系数,各项系数和,奇次项系数和与偶数项系数和.【详解】由,对于A中,令,可得,所以A错误;对于B中,,由二项展开式的通项得,所以B错误;对于C中,与的系数之和相等,令即,所以C正确;对于D中,令,则,令,则,解得,,可得,所以D错误.故选:C.6.函数在区间上所有零点的和等于()A.2B.4C.6D.8【答案】D【解析】【分析】根据在的零点,转化为的图象和函数的图象在交点的横坐标,画出函数图象,可得到两图象关于直线对称,且在上有8个交点,即可求出.【详解】因为,令,则,则函数的零点就是函数的图象和函数的图象在交点的横坐标,可得和的函数图象都关于直线对称,则交点也关于直线对称,画出两个函数的图象,如图所示.观察图象可知,函数的图象和函数的图象在上有8个交点,即有8个零点,且关于直线对称,故所有零点的和为.故选:D7.点M是椭圆上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q,若是钝角三角形,则椭圆离心率的取值范围是()A.B.C.D.【答案】B【解析】【分析】依据题目条件可知圆的半径为,画出图形由是钝角三角形可得,即可求得椭圆离心率的取值范围.【详解】依题意,不妨设为右焦点,则,由圆M与x轴相切于焦点F,M在椭圆上,易得或,则圆的半径为.过M作轴垂足为N,则,,如下图所示:,均为半径,则为等腰三角形,∴,∵为钝角,∴,即,所以得,即,得,得,故有,从而解得.故选:B8.已知函数若存在唯一的整数x,使得成立,则所有满足条件的整数a的取值集合为()A.B.C.D.【答案】A【解析】【分析】作出的图象,由不等式的几何意义:曲线上一点与连线的直线斜率小于0,结合图象即可求得范围.【详解】作出的函数图象如图所示:表示点与点所在直线的斜率,可得曲线上只有一个点(x为整数)和点所在直线的斜率小于0,而点在动直线上运动,由,,,可得当时,只有点满足;当时,只有点满足.又a为整数,可得a的取值集合为.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已知双曲线过点,且渐近线方程为,则下列结论正确的是()A.的方程为B.的离心率为C.曲线经过的一个焦点D.直线与有两个公共点【答案】AC【解析】【分析】由双曲线的渐近线为,设出双曲线方程,代入已知点的坐标,求出双曲线方程判断;再求出双曲线的焦点坐标判断,;联立方程组判断.【详解】解:由双曲线的渐近线方程为,可设双曲线方程为,把点代入,得,即.双曲线的方程为,故正确;由,,得,双曲线的离心率为,故错误;取,得,,曲线过定点,故正确;联立,化简得,所以直线与只有一个公共点,故不正确.故选:.10.已知向量,满足,且,则()A
立即下载