如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1.一般的,判断一件事情的句子叫做命题,命题分为真命题与假命题。2.说明一个命题是假命题,通常只用找出一个反例,但要说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子。复习练习:一、判断下列命题的真假.回顾交流情景引入例1、证明:等腰三角形两底角的平分线相等。已知:如图,在△ABC中,AB=AC,BD,CE是△ABC的角平分线。求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).∵∠1=∠ABC,∠2=∠ACB,∴∠1=∠2.在△BDC和△CEB中,∵∠ACB=∠ABC,BC=CB,∠1=∠2,∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等).思维拓展:2、如图,O是△ABC的∠ABC与∠ACB的平分线的交点,DE∥BC交AB于点D,交AC于点E.若AB=10cm,AC=8cm,则△ADE的周长是_____cm.例2等腰三角形的底角为15°,腰长为2a,求腰上的高。如图,在△ABC中,已知AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高,求CD的长.解:∵∠ABC=∠ACB=15°,∴∠DAC=∠ABC+∠ACB=15°+15°=30°.∴CD=AC=×2a=a(在直角三角形中,如果一个锐角等于30°,那么他所对的直角边等与斜边的一半).例3、如图,已知AD是△ABD和△ACD的公共边.求证:∠BDC=∠BAC+∠B+∠C例.如图,已知AD是△ABD和△ACD的公共边.求证:∠BDC=∠BAC+∠B+∠C练一练请用反例证明命题“相等的角是对顶角”是假命题.定义:证明:在三角形中至少有一个角大于或等于60°.已知:△ABC求证:△ABC中至少有一个角大于或等于60°证明:假设△ABC的三个角都小于60°,那么三角之和必小于180°,这与“三角形三个内角和等于180°”相矛盾。因此,△ABC中至少有一个角大于或等于60°.例3、已知:如图,直线AB,CD,EF在同一平面内,且AB∥EF,CD∥EF,求证:AB∥CD。小组合作交流