如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
高中数学《一元二次不等式解法》说课稿作为一名教师,很有必要精心设计一份说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。如何把说课稿做到重点突出呢?下面是小编收集整理的高中数学《一元二次不等式解法》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。高中数学《一元二次不等式解法》说课稿1一、教材分析(一)教材的地位和作用“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。(二)教学内容本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。二、教学目标分析根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。三、重难点分析一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的`重要工具。本节课的重点确定为:一元二次不等式的解法。要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。为此,我设计了以下几个问题:1、请同学们解以下方程和不等式:①2x—7=0;②2x—7>0;③2x—7学生回答,我板书。2、我指出:2x—7>0和2x—73、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。4、为此,我引入一次函数y=2x—7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:①2x—7=0的解恰是函数y=2x—7的图象与x轴交点的横坐标。②2x—7>0的解集正是函数y=2x—7的图象在x轴的上方的点的横坐标的集合。③2x—7在x轴的下方的点的横坐标的集合。三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2—x—6的图象来求不等式x2—x—6>0的解集。(二)比旧悟新,引出“三个二次”的关系为此我引导学生作出函数y=x2—x—6的图象,按照“看一看说一说问一问”的思路进行探究。看函数y=x2—x—6的图象并说出:①方程x2—x—6=0的解是x=—2或x=3;②不等式x2—x—6>0的解集是{x|x3};③不等式x2—x—6{x|—2此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2—x—6变为y=ax2bxc(a>0),那么图象与x轴的位置关系又怎样呢?(学生回答:△>0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0与ax2bxc(三)归纳提炼,得出“三个二次”的关系1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。2、此时提出:若a0及ax2bxc(四)应用新知,熟练掌握一元二次不等式的解集借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:例1、解不等式2x2—3x—2>0解:因为Δ>0,方程2x2—3x—2=0的解是x1=,x2=2所以,不等式的解集是{x|x2}例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。下面我们接着学习课本例2。例2解不等式—3x26x>2课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a通过例1、例2的解决,学生与