如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
运筹学考试时间:2009-1-410:00-12:00考试地点:金融1、2:(二)201,会计1、2:(二)106人资1、2:(二)203,工商1、2:(二)205林经1、2:(二)306答疑时间:17周周二周四上午8:00-11:0018周周一周三上午8:00-11:00地点:基础楼201线性规划如何建立线性规划的数学模型;线性规划的标准形有哪些要求?如何把一般的线性规划化为标准形式?如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质?如何用单纯形方法求解线性规划问题?如何确定初始可行基或如何求初始基本可行解?(两阶段方法)如何写出一个线性规划问题的对偶问题?如果已知原问题的最优解如何求解对偶问题的最优解?(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题?如何求解?对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基?如果不是,如何进一步求解?1、建立线性规划的数学模型:特点:(1)每个行动方案可用一组变量(x1,…,xn)的值表示,这些变量一般取非负值;(2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示;(3)有一个需要优化的目标,它也是变量的线性函数。2、线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式?目标求极小;约束为等式;变量为非负。例:把下列线性规划化为标准形式:解:令标准型为:3、如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质?例:参看ppt(唯一最优解、无穷多最优解、无界解、无解)线性规划解的性质:(基、基本解、基本可行解、凸集、顶点)定理1线性规划的可行域是凸集。定理2X是线性规划基可行解的充分必要条件是X是可行域的顶点。定理3线性规划如果有可行解,则一定有基可行解;如果有最优解,则一定有基可行解是最优解。4、如何用单纯形方法求解线性规划问题?(单纯形表)单纯形法的基本法则法则1最优性判定法则(检验数全部小于等于零时最优)法则2换入变量确定法则(谁最正谁进基)法则3换出变量确定法则(最小比值原则)法则4换基迭代运算法则x1x2x3x4x5RHSz250000x3x4x515022[4]10001000182012z2000-5/4-15x3x4x2[1]50001100010-1/2-1/21/42143z00-20-1/4-19x1x4x21000011-50010-1/221/4243最优解X*=(2,3,0,4,0)T,z*=-2×2-5×3=-19。5、如何确定初始可行基或如何求初始基本可行解?(两阶段方法)例求下列LP问题的最优解用两阶段法来求解它的第一阶段是先解辅助问题:x1x2x3x4x5x6x7RHSg00000-1-10x4x6x71-4-2-2101211000-100100011131g-6130-1004x4x6x71-4-2-21012[1]1000-100100011131g0100-10-31x4x6x330-2-2[1]00011000-10010-1-211011g00000-1-10x4x2x330-2010001100-2-10210-5-211211第二阶段:x1x2x3x4x5RHSz-311000x4x2x330-2010001100-2-101211z-10001-2x4x2x330-2010001100-2-101211原问题无界。6、如何写出原问题的对偶问题?如果已知原问题的最优解,如何求解对偶问题的最优解?例写出下面线性规划问题的对偶问题解:原问题的对偶问题为:7、对偶单纯形方法适合解决什么样的问题?如何求解?例:对偶单纯形法的基本法则法则1最优性判定法则(检验数全部小于等于零时最优)法则2换出变量确定法则(谁最负谁出基)法则3换入变量确定法则(最小比值原则)法则4换基迭代运算法则x1x2x3x4x5RHSz-15-24-5000x4x50-5[-6]-2-1-11001-2-1z-150-1-408x2x50-5101/6[-2/3]-1/6-1/3011/3-1/3z-15/200-7/2-3/217/2