3.2.1《圆的对称性》教案(北师大版九年级下) (4)doc--初中数学.doc
上传人:13****88 上传时间:2024-09-15 格式:DOC 页数:8 大小:118KB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

3.2.1《圆的对称性》教案(北师大版九年级下) (4)doc--初中数学.doc

3.2.1《圆的对称性》教案(北师大版九年级下)(4)doc--初中数学.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

6 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数圆的对称性教学目标(一)教学知识点1.圆的轴对称性.2.垂径定理及其逆定理.3.运用垂径定理及其逆定理进行有关的计算和证明.(二)能力训练要求1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研讨几何图形的各种方法.2.培养先生独立探索、相互合作交流的精神.(三)情感与价值观要求通过学习垂径定理及其逆定理的证明,使先生领会数学的严谨性和探索精神,培养先生实事求是的科学态度和积极参与的自动精神.垂径定理及其逆定理.垂径定理及其逆定理的证明.指点探索和自主探索相结合.投影片两张:第一张:做一做(记作§3.2.1A)第二张:想一想(记作§3.2.1B)教学过程Ⅰ.创设问题情境,引入新课[师]前面我们已探讨过轴对称图形,哪位同学能叙说一下轴对称图形的定义?[生]如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.[师]我们是用什么方法研讨了轴对称图形?[生]折叠.[师]今天我们继续用前面的方法来研讨圆的对称性.Ⅱ.讲授新课[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?[生]圆是轴对称图形,过圆心的直线是它的对称轴,有没无数条对称轴.[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下.[生]我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有没无数条对称轴.[师]很好.教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线.下面我们来认识一下弧、弦、直径这些与圆有关的概念.1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).2.弦:连接圆上任意两点的线段叫做弦(chord).3.直径:经过圆心的弦叫直径(diameter).如下图,以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弧CD是⊙O的一条直径.留意:1.弧包括优弧(majorarc)和劣弧(minorarc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作),劣弧ABD(记作).半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不必然是半圆;半圆既不是劣弧,也不是优弧.2.直径是弦,但弦不必然是直径.下面我们一同来做一做:(出示投影片§3.2.1A)按下面的步骤做一做:1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD.3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B,如上图.[师]老师和大家一同动手.(教师叙说步骤,师生共同操作)[师]通过第一步,我们可以得到什么?[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.[师]很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?[生]我发现了,AM=BM,,.[师]为什么呢?[生]由于折痕AM与BM互相重合,A点与B点重合.[师]还可以怎样说呢?能不能利用构造等腰三角形得出上面的等量关系?[师生共析]如下图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,与重合,与重合.因而AM=BM,=,=.[师]在上述操作过程中,你会得出什么结论?[生]垂直于弦的直径平分这条弦,并且平分弦所对的弧.[师]同学们总结得很好.这就是利用圆的轴对称性得到的与圆相关的一个重要性质——垂径定理.在这里留意;①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.下面,我们一同看一下定理的证明:(教师边板书,边叙说)如上图,连结OA、OB,则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM,∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,与重合,与重合.∴=,=.[师]为了运用的方便,不易出现错误,易于记忆,可将原定理叙说为:一条直线若满足:(1)过圆心;(2
立即下载