如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
(一)基本(jīběn)物理量:(二)运动(yùndòng)方程(三)圆周运动:二、动力学(二)动量定理(dònɡliànɡdìnɡlǐ)与动量守恒定律(三)功和能3、功、能关系(guānxì)注意(zhùyì):(三)转动惯量(四)刚体(gāngtǐ)力学中的功和能(五)刚体(gāngtǐ)角动量和角动量守恒定律质点运动与刚体定轴转动对照例1一质量为M半径为R的转台,以角速度a转动,转轴的摩擦不计。1)有一质量为m的蜘蛛垂直地落在转台边缘上,求此时转台的角速度b;2)如果蜘蛛随后(suíhòu)慢慢地爬向转台中心,当它离转台中心距离为r时,转台的角速度c为多少?例:2一质量为M长度为L的均质细杆可绕一水平轴自由转动。开始时杆子处于(chǔyú)铅垂状态。现有一质量为m的橡皮泥以速度v和杆子发生完全非弹性碰撞并且和杆子粘在一起。试求:(1)碰撞后系统的角速度(2)碰撞后杆子能上摆的最大角度。例3如图,质量为m的粘土(zhāntǔ)块从距匀质圆盘h处落下,盘的质量M=2m,=60°,盘心为光滑轴。求(1)碰撞后瞬间盘的0;(2)P转到x轴时盘的,。解:由角动量守恒(shǒuhénɡ)例5人和转盘(zhuànpán)的转动惯量为J0,哑铃的质量为m,初始转速为ω1。求:双臂收缩由r1变为r2时的角速度及机械能增量。例6一转台绕其中心的竖直轴以角速度ω0=πs-1转动,转台对转轴的转动惯量为J0=4.0×10-3kg·m2。今有沙粒以Q=2tg·s-1的流量竖直落至转台,并粘附于台面形成(xíngchéng)一圆环,若环的半径为r=0.10m,求沙粒下落t=10s时,转台的角速度。例7如图所示,求系统中物体的加速度。设滑轮为质量均匀分布的圆柱体,其质量为M=15kg,半径为r=0.1m,在绳与轮边缘的摩擦力作用下旋转,忽略转轴(zhuànzhóu)的摩擦,m1物体在光滑水平桌面上。两物体的质量分别为m1=50kg,m2=200kg。例8长为l、质量为m的均匀细直棒,其一端有一固定的光滑水平轴,因而可以在竖直平面(píngmiàn)内转动。最初棒静止在与水平方向成0夹角的位置,求:例9如图,一空心圆环可绕竖直轴OO´自由转动,转动惯量为J0,环的半径为R,初始角速度为ω0,今有一质量为m的小球静止(jìngzhǐ)在环内A点,由于微小扰动使小球向下滑动。问小球到达B、C点时,环的角速度与小球相对于环的速度各为多少?(设环内壁光滑)。谢谢您的观看(guānkàn)!内容(nèiróng)总结