数学专业英语论文含中文.docx
上传人:王子****青蛙 上传时间:2024-09-13 格式:DOCX 页数:7 大小:376KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

数学专业英语论文含中文.docx

数学专业英语论文含中文.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

IntroductionandmainresultsInthispaper,weshallassumethatthereaderisfamiliarwiththefundamentalresultsandthestardardnotationsoftheNevanlinna'svaluedistributiontheoryofmeromorphicfunctions[12,14,16].Inaddition,wewillusethenotation,andtodenoterespectivelytheorderofgrowth,thelowerorderofgrowthandtheexponentofconvergenceofthezerosofameromorphicfunction,([see8]),thee-typeorderoff(z),isdefinedtobeSimilarly,,thee-typeexponentofconvergenceofthezerosofmeromorphicfunction,isdefinedtobeWesaythathasregularorderofgrowthifameromorphicfunctionsatisfiesWeconsiderthesecondorderlineardifferentialequationWhereisaperiodicentirefunctionwithperiod.Thecomplexoscillationtheoryof(1.1)wasfirstinvestigatedbyBankandLaine[6].Studiesconcerning(1.1)haveeencarriedonandvariousoscillationtheoremshavebeenobtained[2{11,13,17{19].Whenisrationalin,BankandLaine[6]provedthefollowingtheoremTheoremALetbeaperiodicentirefunctionwithperiodandrationalin.Ifhaspolesofoddorderatbothand,thenforeverysolutionof(1.1),Bank[5]generalizedthisresult:Theaboveconclusionstillholdsifwejustsupposethatbothandarepolesof,andatleastoneisofoddorder.Inaddition,thestrongerconclusion(1.2)holds.Whenistranscendentalin,Gao[10]provedthefollowingtheoremTheoremBLet,whereisatranscendentalentirefunctionwith,isanoddpositiveintegerand,Let.Thenanynon-triviasolutionof(1.1)musthave.Infact,thestrongerconclusion(1.2)holds.Anexamplewasgivenin[10]showingthatTheoremBdoesnotholdwhenisanypositiveinteger.Iftheorder,butisnotapositiveinteger,whatcanwesay?ChiangandGao[8]obtainedthefollowingtheoremsTheorem1Let,where,andareentirefunctionswithtranscendentalandnotequaltoapositiveintegerorinfinity,andarbitrary.IfSomepropertiesofsolutionsofperiodicsecondorderlineardifferentialequationsandaretwolinearlyindependentsolutionsof(1.1),thenOrWeremarkthattheconclusionofTheorem1remainsvalidifweassumeisnotequaltoapositiveintegerorinfinity,andarbitraryandstillassume,Inthecasewhenistranscendentalwithitslowerordernotequaltoanintegerorinfinityandisarbitrary,we