初中数学二次函数知识点总结(优质文档).pdf
上传人:文宣****66 上传时间:2024-09-11 格式:PDF 页数:6 大小:166KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

初中数学二次函数知识点总结(优质文档).pdf

初中数学二次函数知识点总结(优质文档).pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整)初中数学二次函数知识点总结(word版可编辑修改)(完整)初中数学二次函数知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)初中数学二次函数知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)初中数学二次函数知识点总结(word版可编辑修改)的全部内容。1(完整)初中数学二次函数知识点总结(word版可编辑修改)初中数学二次函数知识点总结原文阅读I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a〉0时,开口方向向上,a〈0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)则称y为x的二次函数.二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x—x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=—b/2ak=(4ac—b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2aIII。二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。2(完整)初中数学二次函数知识点总结(word版可编辑修改)IV。抛物线的性质1。抛物线是轴对称图形。对称轴为直线x=—b/2a.对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2。抛物线有一个顶点P,坐标为:P(—b/2a,(4ac—b^2)/4a)当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。3。二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.|a|越大,则抛物线的开口越小。4。一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。5.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b^2-4ac>0时,抛物线与x轴有2个交点。Δ=b^2-4ac=0时,抛物线与x轴有1个交点。Δ=b^2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)3(完整)初中数学二次函数知识点总结(word版可编辑修改)V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:当h〉0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h〉0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h〉0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;4(完整)初中数学二次函数知识点总结(word版可编辑修改)当h<0,k〉0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;当h〈0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k