如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基础知识自主学习基础知识自主学习求AB求水平距离实际问题中的常用术语1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线叫仰角,目标视线在水平视线叫俯角(如图①).3.方位角指从方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.()(2)俯角是铅垂线与视线所成的角,其范围为.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)方位角大小的范围是[0,2π),方向角大小的范围一般是.()题组二教材改编2.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为m.13.如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=米.解析由题图可得∠PAQ=α=30°,∠BAQ=β=15°,△PAB中,∠PAB=α-β=15°,又∠PBC=γ=60°,∴∠BPA=(90°-α)-(90°-γ)=γ-α=30°,题组三易错自纠4.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC等于A.10°B.50°C.120°D.130°5.如图所示,D,C,B三点在地面的同一条直线上,DC=a,从C,D两点测得A点的仰角分别为60°,30°,则A点离地面的高度AB=.6.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20km/h;水的流向是正东,流速是20km/h,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东,速度的大小为km/h.题型分类深度剖析1.在相距2km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为2.(2019·郑州一中月考)如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,则山高CD=.解析由已知得,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.3.(2018·枣庄模拟)如图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°的方向,且与它相距8nmile.此船的航速是nmile/h.求距离、高度问题的注意事项(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.典例如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cosθ的值为.解析在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得BC2=AB2+AC2-2AB·AC·cos120°=2800,解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义;(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.解析由已知∠ACB=180°-40°-60°=80°,又AC=BC,∴∠A=∠ABC=50°,60°-50°=10°,∴灯塔A位于灯塔B的北偏西10°的方向上.典例(2018·石家庄模拟)在△ABC中,a,b,c分别是角A,B,C的对边,(2a-c)cosB-bcosC=0.(1)求角B的大小;解因为(2a-c)cosB-bcosC=0,所以2acosB-ccosB-bcosC=0,由正弦定理得2sinAcosB-sinCcosB-cosCsinB=0,即2sinAcosB-sin(C+B)=0,又C+B=π-A,所以sin(C+B)=sinA.所以sinA(2cosB-1)=0.在△ABC中,sinA≠0,(2)设函数f(x)=2sinxcosxcosB-cos2x,求函数f(x)的最大值及当f(x)取得最大值时x的值.三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形