如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1.若函数f(x)logax(0a1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为()2211A.B.C.D.42422.若函数yloga(xb)(a0,a1)的图象过两点(1,0)和(0,1),则()A.a2,b2B.a2,b2C.a2,b1D.a2,b263.已知f(x)log2x,那么f(8)等于()41A.B.8C.18D.324.函数ylgx()A.是偶函数,在区间(,0)上单调递增B.是偶函数,在区间(,0)上单调递减C.是奇函数,在区间(0,)上单调递增D.是奇函数,在区间(0,)上单调递减1x5.已知函数f(x)lg.若f(a)b.则f(a)()1x11A.bB.bC.D.bb6.函数f(x)logax1在(0,1)上递减,那么f(x)在(1,)上()A.递增且无最大值B.递减且无最小值C.递增且有最大值D.递减且有最小值1.若f(x)2x2xlga是奇函数,则实数a=_________。2.函数2的值域是__________.f(x)log1x2x523.已知log147a,log145b,则用a,b表示log3528。4.设A1,y,lgxy,B0,x,y,且AB,则x;y。2log5325.计算:32。ex16.函数y的值域是__________.ex1三、解答题2.解方程:(1)9x231x27(2)6x4x9x3.已知y4x32x3,当其值域为[1,7]时,求x的取值范围。x4.已知函数f(x)loga(aa)(a1),求f(x)的定义域和值域;参考答案一、选择题11121.Aloga3log(2a),log(2a),a32a,a8a3,a2,aaaa3842.Aloga(b1)0,且logab1,ab216663.D令x8(x0),x82,f(8)f(x)log2xlog224.B令f(x)lgx,f(x)lgxlgxf(x),即为偶函数令ux,x0时,u是x的减函数,即ylgx在区间(,0)上单调递减1x1x5.Bf(x)lglgf(x).则f(a)f(a)b.1x1x6.A令ux1,(0,1)是u的递减区间,即a1,(1,)是u的递增区间,即f(x)递增且无最大值。二、填空题11.f(x)f(x)2x2xlga2x2xlga101(lga1)(2x2x)0,lga10,a101(另法):xR,由f(x)f(x)得f(0)0,即lga10,a102.,2x22x5(x1)244,1而201,log1x2x5log1422222alog14283.log147log145log1435ab,log3528ablog1435141loglog(214)1log2141(1log7)2a1414714log1435log1435log1435log1435ab4.1,1∵0A,y0,∴lg(xy)0,xy1又∵1B,y1,∴x1,而x1,∴x1,且y112log5log5log132323215.323232555ex11y6.(1,1)y,ex0,1y1ex11y三、解答题2.解:(1)(3x)263x270,(3x3)(3x9)0,而3x303x90,3x32,x22422(2)()x()x1,()2x()x1039332251()x0,则()x,33251xlog2323.解:由已知得14x32x37,4x32x37(2x1)(2x4)0即,得xxxx43231(21)(22)0即02x1,或22x4∴x0,或1x2。4.解:aax0,axa,x1,即定义域为(,1);xxxa0,0aaa,loga(aa)1,即值域为(,1